검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 86

        1.
        2024.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 실험에서는 α-Al2O3 지지체에 무전해도금을 이용하여 Pd-Ag-Cu 분리막을 제조하였다. Pd, Ag, Cu는 각각 무 전해도금을 통해 지지체 표면에 코팅하였고, 합금의 형성을 위해 무전해도금 중간에 H2, 500°C의 조건에서 18 h 동안 열처리 를 진행하였다. 이를 통해 제조된 Pd-Ag-Cu 분리막은 SEM을 통해 표면을 관찰하였으며, Pd 분리막의 두께는 7.82 μm, Pd-Ag-Cu 분리막의 두께는 3.54 μm로 측정되었다. EDS와 XRD 분석을 통해 Pd-Ag-Cu 합금이 Pd-78%, Ag-8.81%, Cu-13.19%의 조성으로 형성된 것을 확인하였다. 기체투과 실험은 H2 단일가스와 H2/N2 혼합가스에서 실험을 진행하였다. H2 단일가스에서 측정한 수소 분리막의 최대 H2 flux는 Pd 분리막의 경우 450°C, 4 bar에서 74.16 ml/cm2·min이고, Pd-Ag-Cu 분리막의 경우 450°C, 4 bar에서 113.64 ml/cm2·min인 것을 확인하였고, H2/N2 혼합가스에서 측정한 separation factor의 경우 450°C, 4 bar에서 각각 2437, 11032의 separation factor가 측정되었다.
        4,000원
        2.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The effects of annealing on the microstructure and mechanical properties of Al–Zn–Mg–Cu–Si alloys fabricated by high-energy ball milling (HEBM) and spark plasma sintering (SPS) were investigated. The HEBM-free sintered alloy primarily contained Mg2Si, Q-AlCuMgSi, and Si phases. Meanwhile, the HEBM-sintered alloy contains Mg-free Si and θ-Al2Cu phases due to the formation of MgO, which causes Mg depletion in the Al matrix. Annealing without and with HEBM at 500oC causes partial dissolution and coarsening of the Q-AlCuMgSi and Mg2Si phases in the alloy and dissolution of the θ-Al2Cu phase in the alloy, respectively. In both alloys, a thermally stable α-AlFeSi phase was formed after long-term heat treatment. The grain size of the sintered alloys with and without HEBM increased from 0.5 to 1.0 μm and from 2.9 to 6.3 μm, respectively. The hardness of the sintered alloy increases after annealing for 1 h but decreases significantly after 24 h of annealing. Extending the annealing time to 168 h improved the hardness of the alloy without HEBM but had little effect on the alloy with HEBM. The relationship between the microstructural factors and the hardness of the sintered and annealed alloys is discussed.
        4,000원
        3.
        2023.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        This study investigated the growth behavior and characteristics of compounds formed at the interface between a liquid Al-Si-Cu alloy and solid cast iron. Through microstructural analyses, it was observed that various AlFe and AlFeSi phases are formed at the interface, and the relative proportion of each phase changes when small amounts of strontium are added to the Al alloy. The results of the microstructural analysis indicate that the primary phases of the interfacial compounds in the Al-Si-Cu base alloy are Al8Fe2Si and Al4.5FeSi. However, in the Sr-added alloys, significant amounts of binary AlFe intermetallic compounds such as Al5Fe2 and Al13Fe4 formed, in addition to the AlFeSi phases. The inclusion of Sr has a slight diminishing effect on the rate at which the interfacial compounds layer thickens during the time the liquid Al alloy is in contact with the cast iron. The study also discusses the nano-indentation hardness and micro-hardness of the interfacial phases.
        4,000원
        4.
        2023.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study investigates the melting point and brazing properties of the aluminum (Al)-copper (Cu)-silicon (Si)-tin (Sn) alloy fabricated for low-temperature brazing based on the alloy design. Specifically, the Al-20Cu-10Si-Sn alloy is examined and confirmed to possess a melting point of approximately 520oC. Analysis of the melting point of the alloy based on composition reveals that the melting temperature tends to decrease with increasing Cu and Si content, along with a corresponding decrease as the Sn content rises. This study verifies that the Al-20Cu-10Si-5Sn alloy exhibits high liquidity and favorable mechanical properties for brazing through the joint gap filling test and Vickers hardness measurements. Additionally, a powder fabricated using the Al-20Cu-10Si-5Sn alloy demonstrates a melting point of around 515oC following melting point analysis. Consequently, it is deemed highly suitable for use as a low-temperature Al brazing material.
        4,000원
        5.
        2023.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In order to broaden the range of application of light weight aluminum alloys, it is necessary to enhance the mechanical properties of the alloys and combine them with other materials, such as cast iron. In this study, the effects of adding small amounts of Cu and Zr to the Al-Si-Mg based alloy on tensile properties and corrosion characteristics were investigated, and the effect of the addition on the interfacial compounds layer with the cast iron was also analyzed. Although the tensile strength of the Al-Si-Mg alloy was not significantly affected by the additions of Cu and Zr, the corrosion resistance in 3.5 %NaCl solution was found to be somewhat lowered in this research. The influence of Cu and Zr addition on the type and thickness of the interfacial compounds layer formed during compound casting with cast iron was not significant, and the main interfacial compounds were identified to be Al5FeSi and Al8Fe2Si phases, as in the case of the Al-Si-Mg alloys.
        4,000원
        6.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Aluminum alloys are extensively employed in several industries, such as automobile, aerospace, and architecture, owing to their high specific strength and electrical and thermal conductivities. However, to meet the rising industrial demands, aluminum alloys must be designed with both excellent mechanical and thermal properties. Computer-aided alloy design is emerging as a technique for developing novel alloys to overcome these trade-off properties. Thus, the development of a new experimental method for designing alloys with high-throughput confirmation is gaining focus. A new approach that rapidly manufactures aluminum alloys with different compositions is required in the alloy design process. This study proposes a combined approach to rapidly investigate the relationship between the microstructure and properties of aluminum alloys using a direct energy deposition system with a dual-nozzle metal 3D printing process. Two types of aluminum alloy powders (Al-4.99Si-1.05Cu-0.47Mg and Al-7Mg) are employed for the 3D printing-based combined method. Nine types of Al-Si-Cu-Mg alloys are manufactured using the combined method, and the relationship between their microstructures and properties is examined.
        4,000원
        7.
        2021.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The precipitation effect of Al-6%Si-0.4%Mg-0.9%Cu-(Ti) alloy (in wt.%) after various heat treatments was studied using a laser flash device (LFA) and differential scanning calorimetry (DSC). Solid solution treatment was performed at 535 oC for 6 h, followed by water cooling, and samples were artificially aged in air at 180 oC and 220 oC for 5 h. The titanium-free alloy Al-6%Si-0.4%Mg-0.9%Cu showed higher thermal diffusivity than did the Al-6%Si-0.4%Mg-0.9%Cu-0.2%Ti alloy over the entire temperature range. In the temperature ranges below 200 oC and above 300 oC, the value of thermal diffusivity decreased with increasing temperature. As the sample temperature increased between 200 oC and 400 oC, phase precipitation occurred. From the results of DSC analysis, the temperature dependence of the change in thermal diffusivity in the temperature range between 200 oC and 400 oC was strongly influenced by the precipitation of θ'-Al2Cu, β'-Mg2Si, and Si phases. The most important factor in the temperature dependence of thermal diffusivity was Si precipitation.
        4,000원
        8.
        2020.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Effects of Sc addition on microstructure, electrical conductivity, thermal conductivity and mechanical properties of the as-cast and as-extruded Al-2Zn-1Cu-0.3Mg-xSc (x = 0, 0.25, 0.5 wt%) alloys are investigated. The average grain size of the as-cast Al-2Zn-1Cu-0.3Mg alloy is 2,334 μm; however, this value drops to 914 and 529 μm with addition of Sc element at 0.25 wt% and 0.5 wt%, respectively. This grain refinement is due to primary Al3Sc phase forming during solidification. The as-extruded Al-2Zn-1Cu-0.3Mg alloy has a recrystallization structure consisting of almost equiaxed grains. However, the asextruded Sc-containing alloys consist of grains that are extremely elongated in the extrusion direction. In addition, it is found that the proportion of low-angle grain boundaries below 15 degree is dominant. This is because the addition of Sc results in the formation of coherent and nano-scale Al3Sc phases during hot extrusion, inhibiting the process of recrystallization and improving the strength by pinning of dislocations and the formation of subgrain boundaries. The maximum values of the yield and tensile strength are 126 MPa and 215 MPa for the as-extruded Al-2Zn-1Cu-0.3Mg-0.25Sc alloy, respectively. The increase in strength is probably due to the existence of nano-scale Al3Sc precipitates and dense Al2Cu phases. Thermal conductivity of the as-cast Al-2Zn-1Cu-0.3Mg-xSc alloy is reduced to 204, 187 and 183 W/MK by additions of elemental Sc of 0, 0.25 and 0.5 wt%, respectively. On the other hand, the thermal conductivity of the as-extruded Al-2Zn-1Cu-0.3Mg-xSc alloy is about 200 W/Mk regardless of the content of Sc. This is because of the formation of coherent Al3Sc phase, which decreases Sc content and causes extremely high electrical resistivity.
        4,000원
        9.
        2020.08 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The relationship between the precipitation of secondary phase and the thermal properties of Al-4.5%Cu alloy (in wt.%) after various heat treatments has been studied. Solid solution treatment of alloy was performed at 808 K for 6 hours, followed by warm water quenching; then, the samples were aged in air at 473 K for different times. The thermal diffusivity of the Al-4.5%Cu alloy changed with the heat treatment conditions of the alloy at temperatures below 523 K. The as-quenched specimen had the lowest thermal diffusivity, and as the artificial aging time increased, the thermal diffusivity of the specimen increased in the temperature range between 298 and 523 K. For the specimen aged for five hours, the thermal conductivity was 12% higher than that of the as-quenched specimens at 298 K. It is confirmed that the thermal diffusivity and thermal conductivity of the Al-4.5%Cu alloy significantly depend on their thermal history at temperatures below 523 K. The precipitation and dissolution of the Al2Cu phase were confirmed via DSC for the alloys, and the formation of coefficient of thermal expansion peaks in TMA was caused by precipitation. The precipitation of supersaturated solid solution of Al-4.5%Cu alloys had an additional linear expansion of ≈ 0.05 % at 643 K during thermal expansion measurement.
        4,000원
        10.
        2020.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study, the effects of Sm addition (0, 0.05, 0.2, 0.5 wt%) on the microstructure, hardness, and electrical and thermal conductivity of Al-11Si-1.5Cu aluminum alloy were investigated. As a result of Sm addition, increment in the amount of α-Al and refinement of primary Si from 70 to 10 μm were observed due to eutectic temperature depression. On the other hand, Sm was less effective at refining eutectic Si because of insufficient addition. The phase analysis results indicated that Sm-rich intermetallic phases such as Al-Fe-Mg-Si and Al-Si-Cu formed and led to decrements in the amount of primary Si and eutectic Si. These microstructure changes affected not only the hardness but also the electrical and thermal conductivity. When 0.5 wt% Sm was added to the alloy, hardness increased from 84.4 to 91.3 Hv, and electric conductivity increased from 15.14 to 16.97 MS/m. Thermal conductivity greatly increased from 133 to 157 W/m·K.
        4,000원
        11.
        2020.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The effect of intercritical annealing temperature on the microstructure and mechanical properties of Fe-9Mn-0.2C- 3Al-0.5Si medium manganese steels containing Cu and Ni is investigated in this study. Six kinds of medium manganese steels are fabricated by varying the chemical composition and intercritical annealing temperature. Hardness and tensile tests are performed to examine the correlation of microstructure and mechanical properties for the intercritical annealed medium manganese steels containing Cu and Ni. The microstructures of all the steels are composed mostly of lath ferrite, reverted austenite and cementite, regardless of annealing temperature. The room-temperature tensile test results show that the yield and tensile strengths decrease with increasing intercritical annealing temperature due to higher volume fraction and larger thickness of reverted austenite. On the other hand, total and uniform elongations, and strain hardening exponent increase due to higher dislocation density because transformation-induced plasticity is promoted with increasing annealing temperature by reduction in reverted austenite stability.
        4,000원
        12.
        2018.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study, we investigate the recycling of aluminum-based metal matrix composites(AMCs) embedded with SiC particulates. The microstructure of the AMCs is characterized by X-ray diffraction and scanning electron microscopy. The possibility of recycling the composite scrap is attempted from the melted alloy and SiC particulates by re-melting, holding and solidification in crucibles. The recovery percentage of the matrix alloy is calculated after a number of holding times, 0, 5, 10, 15, 20, 25 and 30 minutes and for different particulate sizes and weight fractions in the Al matrix. The results show that the recovery percentage of the matrix alloy, as well as the time required for maximum recovery of the matrix, is dependent on the size and weight fraction of SiC particulates. In addition, the percentage recovery increases with particulate size but drops with the particulate fraction in the matrix. The time to reach maximum recovery falls rapidly with an increase in particulate size and fraction.
        4,000원
        13.
        2018.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Porous Cu with a dispersion of nanoscale Al2O3 particles is fabricated by freeze-drying CuO-Al2O3/camphene slurry and sintering. Camphene slurries with CuO-Al2O3 contents of 5 and 10 vol% are unidirectionally frozen at -30oC, and pores are generated in the frozen specimens by camphene sublimation during air drying. The green bodies are sintered for 1 h at 700oC and 800oC in H2 atmosphere. The sintered samples show large pores of 100 μm in average size aligned parallel to the camphene growth direction. The internal walls of the large pores feature relatively small pores of ~10 μm in size. The size of the large pores decreases with increasing CuO-Al2O3 content by the changing degree of powder rearrangement in the slurry. The size of the small pores decreases with increasing sintering temperature. Microstructural analysis reveals that 100-nm Al2O3 particles are homogeneously dispersed in the Cu matrix. These results suggest that a porous composite body with aligned large pores could be fabricated by a freeze-drying and H2 reducing process.
        4,000원
        14.
        2017.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study, an Al-0.7wt%Fe-0.2wt%Mg-0.2wt%Cu-0.02wt%B alloy was designed to fabricate an aluminum alloy for electrical wire having both high strength and high conductivity. The designed Al alloy was processed by casting, extrusion and drawing processes. Especially, the drawing process was done by severe deformation of a rod with an initial diameter of 12 mm into a wire of 2 mm diameter; process was equivalent to an effective strain of 3.58, and the total reduction in area was 97 %. The drawn Al alloy wire was then annealed at various temperatures of 200 to 400 °C for 30 minutes. The mechanical properties, microstructural changes and electrical properties of the annealed specimens were investigated. As the annealing temperature increased, the tensile strength decreased and the elongation increased. Recovery or/and recrystallization occurred as annealing temperature increased, and complete recrystallization occurred at annealing temperatures over 300 °C. Electric conductivity increased with increasing temperature up to 250 °C, but no significant change was observed above 300 °C. It is concluded that, from the viewpoint of the mechanical and electrical properties, the specimen annealed at 350 oC is the most suitable for the wire drawn Al alloy electrical wire.
        4,000원
        15.
        2016.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We investigate the microstructural and magnetic property changes of DyH2, Cu + DyH2, and Al + DyH2 diffusion-treated NdFeB sintered magnets with the post annealing (PA) temperature. The coercivity of all the diffusiontreated magnets increases with increasing heat treatment temperature except at 910oC, where it decreases slightly. Moreover, at 880oC, the coercivity increases by 3.8 kOe in Cu and 4.7 kOe in Al-mixed DyH2-coated magnets, whereas this increase is relatively low (3.0 kOe) in the magnet coated with only DyH2. Both Cu and Al have an almost similar effect on the coercivity improvement, particularly over the heat treatment temperature range of 790-880oC. The diffusivity and diffusion depth of Dy increases in those magnets that are treated with Cu or Al-mixed DyH2, mainly because of the comparatively easy diffusion path provided by Cu and Al owing to their solubility in the Nd-rich grain boundary phase. The formation of a highly anisotropic (Nd, Dy)2Fe14B phase layer, which acts as the shell in the core-shell-type structure so as to prevent the reverse domain movement, is the cause of enhanced coercivity of diffusion-treated Nd-Fe-B magnets.
        4,000원
        16.
        2016.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 구리 아연 금속합금의 산화 환원 반응과 합성 알루미늄 실리케이트의 흡착 반응을 이용한 폐수 중 중금속 처리에 관한 연구이다. 극세사 형태로 제조된 구리 아연 금속합금이 수용액 중에 서 산화 환원반응에 의해 아연보다 이온화 경향이 작은 중금속은 환원 처리되고, 이온화 된 아연 및 미 반응 중금속은 흡착 처리하여 제거하는 연구이다. 극세사 형태로 제조된 금속합금 물질은 표면적이 커서 1회 처리만으로도 반응 평형에 도달하게 하여 효율이 높은 것으로 나타났다. 크롬(Cr+3)은 redox 반응 1 회 처리만으로도 100.0 % 제거 되었으며, 수은은 98.0 %, 주석 92.0 %, 구리는 91.4 % 정도 제거되었 다. 카드뮴, 니켈, 납도 각각 40.0 %, 50.0 %, 58.0 %가 제거 되었다. 크롬(Cr+3)은 아연과 이온화 경향 차이가 거의 없지만 제거 효율이 높은 것으로 나타났는데 이는 3가 크롬은 이온 상태로 존재하면 redox 반응에서 발생한 OH- 이온과 결합하여 수산화물 침전을 형성하는 것으로 판단된다. Redox 반응 후 증 가한 아연 및 미반응 중금속 농도를 알루미늄실리케이트를 1회 통과하여 거의 100.0 % 제거할 수 있었 다. 이는 합성 알루미늄 실리케이트의 비표면적이 크고 금속 이온의 흡착능력이 우수한 것으로 나타났으 며, 반응 후 알루미늄 이온은 증가하지 않는 것으로 보아 이온 교환이 아닌 흡착으로 아연 및 중금속 이 온들을 제거할 수 있는 것으로 나타났다.
        4,000원
        17.
        2016.07 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        For the development of a low-melting point filler metal for brazing aluminum alloy, we analyzed change of melting point and wettability with addition of Sn into Al-20Cu-10Si filler metal. DSC results showed that the addition of 5 wt% Sn into the Al-20Cu-10Si filler metal caused its liquidus temperature to decrease by about 30 oC. In the wettability test, spread area of melted Al-Cu-Si-Sn alloy is increased through the addition of Sn from 1 to 5 wt%. For the measuring of the mechanical properties of the joint region, Al 3003 plate is brazed by Al-20Cu-10Si-5Sn filler metal and the mechanical property is measured by tensile test. The results showed that the tensile strength of the joint region is higher than the tensile strength of Al 3003. Thus, failure occurred in the Al 3003 plate.
        4,000원
        18.
        2016.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The morphology, crystal structure and size of aerosol nanoparticles generated by erosion of electrodes made of different materials (titanium, copper and aluminum) in a multi-spark discharge generator were investigated. The aerosol nanoparticle synthesis was carried out in air atmosphere at a capacitor stored energy of 6 J, a repetition rate of discharge of 0.5 Hz and a gas flow velocity of 5.4 m/s. The aerosol nanoparticles were generated in the form of oxides and had various morphologies: agglomerates of primary particles of TiO2 and Al2O3 or aggregates of primary particles of Cu2O. The average size of the primary nanoparticles ranged between 6.3 and 7.4 nm for the three substances studied. The average size of the agglomerates and aggregates varied in a wide interval from 24.6 nm for Cu2O to 46.1 nm for Al2O3.
        4,000원
        19.
        2014.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Microstructural and mechanical characteristics of Al-6Si-2Cu alloy for lightweight automotive parts were investigated. The test specimens were prepared by gravity casting process. Solution heat treatments were applied to as-cast alloys to improve mechanical properties. The microstructure of the gravity casting specimen presents a typical dendrite structure, having a secondary dendrite arm spacing (SDAS) of 37μm. In addition to the Al matrix, a large amount of coarsened eutectic Si, Al2Cu intermetallic phase, and Fe-rich phases were identified. After solution heat treatment, single-step solution heat treatments were found to considerably improve the spheroidization of the eutectic Si phase. Two-step solution treatments gave rise to a much improved spheroidization. The mechanical properties of the two-step solution heat treated alloy have been shown to lead to higher values of properties such as tensile strength and microhardness. Consequentially, the microstructural and mechanical characteristics of Al alloy have been successfully characterized and are available for use with other basic data for the development of lightweight automotive parts.
        4,000원
        20.
        2014.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study was performed to obtain high conversion efficiency of NH3 and minimize generation of nitrogen oxides using metal-supported catalyst with Ag : Cu ratio. Through structural analysis of the prepared catalyst with Ag : Cu ratio ((10-x)Ag–xCu (0≤ x ≤6)), it was confirmed that the specific surface area was decrease with increasing metal content. A prepared catalysts showed Type Ⅱ adsorption isotherms regardless of the ratio Ag : Cu of metal content, and crystalline phase of Ag2O, CuO and CuAl2O was observed by XRD analysis. In the low temperature(150∼200 ℃), a conversion efficiency of AC_10 recorded the highest(98%), whereas AC_5 (Ag : Cu = 5 : 5) also showed good conversion efficiency(93.8%). However, in the high temperature range, the amounts of by-products(NO, NO2) formed with AC_5 was lower than that of AC_10. From these results, It is concluded that AC_5 is more environmentally and economically suitable.
        4,000원
        1 2 3 4 5