검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 14

        4.
        2019.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        이 연구의 목적은 인공신경망 기법을 이용하여 사면의 내진 성능을 비교적 정확하면서도 효율적으로 예측하는 모델을 도 출하는데 있다. 사면의 내진 성능은 지진입력 및 사면모델의 무작위성 및 불확실성으로 인하여 정량화하기 쉽지 않다. 이러한 배경 아래 사면에 대한 확률론적 지진 취약도 분석이 몇몇 연구자에 의해 수행되었고, 이를 기반으로 다중 선형회귀분석 을 통하여 사면 내진성능에 대한 닫힌식이 제안된 바 있다. 그러나 전통적인 통계학적 선형회귀분석은 다양한 조건의 사면과 이에 따른 내진 성능 사이의 비선형적 관계를 정확하게 표현하지 못하는 한계를 보였다. 이에 따라 본 연구에서는 이러한 문제점을 극복하고자 인공신경망 기법을 사면 내진성능 예측 모델을 생성하는데 적용하였다. 도출된 모델의 유효성은 기존 의 다중 선형 및 다중 비선형 회귀분석을 통한 모델과 비교하여 검증하였다. 결과적으로 이전 연구의 전통적인 통계학적 회귀 분석을 통한 모델과 비교 결과, 기본적으로 인공신경망 기법을 통하여 도출된 모델이 사면의 내진성능을 예측하는데 있어 우수한 성능을 보여주었다. 이러한 정확도 높은 모델은 향후 확률에 기반한 사면의 지진취약도 지도를 개발하고, 주요 구 조물의 인근 사면으로 인한 리스크를 효과적으로 평가하는데 활용될 수 있을 것이라 기대된다.
        4,000원
        5.
        2017.05 구독 인증기관·개인회원 무료
        최근 국내외에서는 수질안정성 향상 및 부지면적 저감을 위해 막여과 공정도입이 활발한 추세이며 특히, 정수처리 분야에서는 정밀여과(Microfiltration) 및 한외여과(Ultrafiltration) 공정이 많이 적용되고 있다. 막여과 공정의 경제성 향상을 위해서는 세정 시점의 예측 및 세정 주기 연장이 매우 중요한 요소이다. 따라서, 본 연구에서는 인공신경망(Artificial neural network)을 활용하여 UF 공정차압(Transmembrane pressure) 예측 모델을 개발하고자 한다. 입력변수로는 유입수 온도, pH, 탁도 등의 일평균값을 이용하였다.
        7.
        2020.06 KCI 등재 서비스 종료(열람 제한)
        항만의 주요 정책 및 향후 운영계획 수립 시 정확한 물동량 예측에 관한 연구는 매우 중요하며 이러한 중요성으로 인해 관련 연구가 활발히 수행되고 있다. 본 논문에서는 국내 최대 석탄 및 철광석 처리 항만인 광양항을 대상으로 단계적 회귀분석과 인공신경망모형을 활용하여 모형간 예측력을 비교하였다. 2009년 1월부터 2019년 1월까지 총 121개월의 월별자료를 활용하였으며 석탄 및 철광석 물동량에 영향을 주는 요인을 선정하여 공급관련요인과 시장·경제관련요인으로 분류하였다. 단계적 회귀분석 결과, 광양항 석탄 물동량 예측모형의 경우, 입항선박 톤수, 석탄가격 및 대미환율이 최종변수로 선정되었고 철광석 물동량 예측모형의 경우, 입항선박 톤수, 철광석가격이 최종변수로 선정되었다. 인공신경망모형의 경우, 모델 성능에 영향을 미치는 다양한 Hyper-parameters를 조정하며 최적 모델을 선정하는 시행착오법을 사용하였다. 분석결과 인공신경망모형이 단계적 회귀분석에 비해 우수한 예측성능을 나타내었으며 예측 모형별 예측값과 실측값을 그래프 상 비교 시에도 인공신경망모형이 단계적 회귀분석에 비해 고·저점을 유사하게 나타냈다.
        8.
        2018.01 KCI 등재 서비스 종료(열람 제한)
        하천 관리에 있어 도달시간은 중요한 인자 중의 하나이다. 특히 사회적으로 다양한 하천 활용에 대한 요구가 높아짐에 따라 친수공간으로써 하천에서의 정확한 도달시간 산정은 홍수시 주민 대피 시간 확보 등을 위해서 매우 중요하다. 그러나 과거 도달시간 산정에 대한 연구는 자연 하천의 복합 유역에서의 단일 수문사상에 대하여 연구가 수행되어왔으며, 도심하천의 단일유역을 대상으로 복합 수문 사상에 대한 도달시간 산정방법의 개발은 미흡한 실정이다. 따라서 최근 집중호우에 의하여 빈번한 침수 피해가 발생된 부산광역시 대표 도심하천인 온천천 유역에 대하여 과거 10년(2006~2015년) 동안의 강우-유출량 자료를 이용하여 도달시간을 산정하였고, Matlab 기반의 인공신경망 기법을 이용하여 신뢰성을 검토하였다. 12시간 이상 무강우를 기준으로 총 254개의 강우 사상을 분리하였고, 이를 바탕으로 총 강우량, 총 유출량, 첨두 강우량/총 강우량, 첨두 유출량/총 유출량, 지체시간, 도달시간 등 총 6개의 변수를 산정하여 인공신경망 모형의 훈련 및 검증에 활용하였다. 그 결과 훈련에 과 예측 및 검증에 활용된 입력 변수의 상관관계는 각 각 0.807 및 0.728로 나타났으며, 연구결과를 바탕으로 도심하천의 도달시간 산정결과의 신뢰성 분석에 이를 활용할 수 있을 것으로 판단된다.
        9.
        2017.11 서비스 종료(열람 제한)
        우리나라의 경우 1990년대부터 환경오염문제의 사회화가 배경이 되어 환경에 대한 관심이 높아짐에 따라 1998년부터 배기가스의 탈황공정이 가동되어 화학석고가 발생하기 시작하였는데 이것이 화력발전소에서 부산물로 나오는 배연탈황석고이다. 국내의 석탄화력 발전소에 설치된 탈황설비는 흡착재로 석회석 분말을 사용하고 부산물로 석고를 생성하는 습식공정으로서, 배연탈황석고는 이수석고(CaSO4⋅2H2O)로 생성되는데, 인산석고와 비교할 때 pH가 중성이며 높은 순도의 균일한 품질을 가지고 있어 발생 전량이 시멘트 및 석고보드 원료로서 재활용되고 있다. 한편 최근 그 수요가 증가하는 고강도콘크리트 혼화재, 슬래그 시멘트에 사용하기 위하여 년간 30만톤 이상 수입되고 있는 천연무수석고는 우리나라에 광물로 부존하지 않는다. 선진국과 마찬가지로 배연탈황 석고가 전량 수입되고 있는 천연석고를 대체할 수 있다는 장점에 대하여 충분히 인식함에도 불구하고, 아직까지 전반적인 기술 기반의 취약성 및 인력 부족으로 석고보드 제조 등 초보적인 수준에 머물러 있으나 최근 콘크리트 혼화재료 제조기업은 중국의 값싼 제품으로 인해 가격 경쟁력을 상실하고 있어 미래 경쟁력 있는 분야로의 전환을 위해 배연탈황 석고를 이용한 고부가성 건설재료 제조 기술에 관심을 가지기 시작하고 있다. 이에 본 연구에서는 지속가능 친환경-고성능 건설용 복합재료의 생산 및 이의 활용 기술을 적극적으로 개발하고자 인공신경망 모델을 활용한 배연탈황석고 모르타르의 배합조건과 물리적 결과값의 데이터를 다양한 알고리즘에 적용하여 이의 분석과 예측의 정확성을 판별하여 기초데이터로 제공하고자 한다.
        10.
        2016.07 KCI 등재 서비스 종료(열람 제한)
        본 연구에서는 임진강 상류유역과 같이 수리수문학적 분석에 필요한 측정데이터가 존재하지 않거나 혹은 데이터의 확보가 어려운 유역에 대하여 위성 데이터와 데이터 기반 모형을 활용하여 유출량을 산정하였다. SDF 시그널(Satellite-derived Flow Signal)은 하도내의 유량변화에 따른 하천 폭의 변화를 반영할 수 있다고 알려져 있으며, 그 상관관계는 하도단면의 형태와 밀접한 관계가 있다. SDF 시그널 데이터와 유출량 간의 비선형 상 관관계를 반영할 수 있는 인공신경망 모형을 활용하여, 모형의 입력변수인 SDF 시그널 데이터로부터 임진강의 임진교 지점에서의 유출량을 추정 하였다. 15개의 위성 이미지 픽셀의 SDF 시그널 값이 0~10일의 lag가 되어 활용되었으며, lag된 데이터를 포함하여 총 150개의 변수 중 유출량 과 가장 큰 관계가 있는 변수 선정을 위해 PMI(Partial Mutual Information) 기법이 활용되었다. 인공신경망 모형을 통해 산정된 유출량은 임진교 에서 측정된 지점 유출량과 비교·분석되었으며, 학습(training)과 검증(validation)을 통한 상관계수는 각각 0.86, 0.72로 좋은 결과를 보여주었 다. 추가적으로 SDF 시그널 데이터 외에 임진교의 1일 전 측정유량이 인공신경망 입력변수로 추가되었을 때 상관계수가 0.90, 0.83으로 증가함을 보였다. 결과로부터 계측수문자료가 부족하거나 접근 불가능한 유역에 대하여 하천 유량 변화에 대한 추정치인 SDF 시그널 데이터와 지상 데이터 가 결합되었을 때 신뢰성 높은 유역의 유출량을 산정할 수 있으며, 큰 유량이 발생하는 홍수사상에 대해서도 첨두 유량과 첨두 발생시간을 잘 모의 할 수 있음을 알 수 있었다. 향후 위성 데이터와 지점 데이터를 활용하여 미계측 유역의 홍수발생에 대하여 높은 정확도로 예측 가능할 것으로 기대 한다.
        11.
        2015.08 KCI 등재 서비스 종료(열람 제한)
        A reliable streamflow forecasting is essential for flood disaster prevention, reservoir operation, water supply and water resources management. This study proposes a hybrid model for river stage forecasting and investigates its accuracy. The proposed model is the wavelet packet-based artificial neural network(WPANN). Wavelet packet transform(WPT) module in WPANN model is employed to decompose an input time series into approximation and detail components. The decomposed time series are then used as inputs of artificial neural network(ANN) module in WPANN model. Based on model performance indexes, WPANN models are found to produce better efficiency than ANN model. WPANN-sym10 model yields the best performance among all other models. It is found that WPT improves the accuracy of ANN model. The results obtained from this study indicate that the conjunction of WPT and ANN can improve the efficiency of ANN model and can be a potential tool for forecasting river stage more accurately.
        12.
        2013.12 KCI 등재 서비스 종료(열람 제한)
        장기간의 가뭄에 의한 피해를 최소화하기 위해서는 유역에 적합한 가뭄관리 대책의 수립과 함께 미래에 발생하게 될 가뭄을 미리 예측할 수 있는 기술이 구축되어야 한다. 또한 미래의 가뭄에 대한 합리적 대응 방안을 수립하기 위해서는 가뭄의 지속기간(duration)과 심도(severity)의 정량적인 예측이 선행되어야 한다. 본 연구에서는 수문 시계열의 예측에 가장 많이 이용되고 있는 대표적인 통계학적 기법인 인공신경망 모형(Artificial Neural Network Model)과 가뭄지수를 이용하여 남한지역의 서울, 대전, 대구, 광주 등의 4개 기상관측소를 선정하여 가뭄예측을 시도하였다. 가뭄 예측을 위하여 남한지역 내 선정한 기상관측소의 관측된 과거 강수량 자료를 이용하여 산정된 SPI (Standardized Precipitation Index)를 입력변수로 하여 다층 퍼셉트론(Multi Layer Perceptron) 인공신경망 모델에 적용하였으며, 매개변수 보정을 위한 학습기간으로 1976∼2000년과 2001∼2010년을 예측을 위한 검증기간으로 선정하여, 학습 및 예측을 시도하였다. 학습된 최적의 예측모형을 이용하여 서로 다른 선행예보시간(1∼6개월)을 갖고 SPI (3), SPI (6), SPI (12)별로 가뭄을 예측하였으며, 가뭄예측 결과, SPI (3)의 경우에는 1개월 선행예보에서만 좋은 결과를 나타내었으며, SPI (6)의 경우 1-3개월 후의 가뭄을 예측하는 경우에 비교적 관측자료와 잘 일치하는 결과를 나타내었다. SPI (12)의 경우에는 약 5개월 후까지의 가뭄예측에 양호한 결과를 나타내었다.
        13.
        2010.08 KCI 등재 서비스 종료(열람 제한)
        강우-유출 관계는 유역의 수많은 시 공간적 변수들에 의해 영향을 받기 때문에 매우 복잡하여 예측하기 힘든 요소이다. 과거에는 추계학적 예측모형이나 확정론적 예측모형 혹은 경험적 모형 등을 사용하여 유출량을 예측하였으나 최근에는 인공신경망과 퍼지모형 그리고 유전자 알고리즘과 같은 인공지능기반의 모형들이 많이 사용되고 있다. 하지만 유출량을 예측하고자 할 때 학습자료 및 검정자료로써 사용되는 유출량은 수위-유량 관계곡선식으로부터 구하는 경우가 대부분으로 이
        14.
        2008.10 KCI 등재 서비스 종료(열람 제한)
        하도내에서 발생하는 유출량 및 TOC 자료는 비선형성이 강한 자료임에 따라 홍수에 대한 재난대응과 수질의 상시감시를 위해서는 자료의 특성 분석과 예측에 관한 연구는 필수라 할 수 있다. 따라서 본 연구에서 유출량 및 TOC, TOC부하량 자료에 대한 웨이블렛 변환에 의해 최종분해된 최종파형분해단계의 근사성분과 상세성분을 이용하여 예측모형을 개발하였다. 그 결과 기존 인공신경망 모형에서 관찰되었던 시계반대 방향으로 전이되는 지속현상의 극복 가능성을 보여주