검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 16

        1.
        2018.11 구독 인증기관·개인회원 무료
        The aim of this study was to investigate the role of Src homology 2-containing phosphotyrosine phosphatase SHP2 in intricate signaling network invoked by oocyte to achieve cytoplasmic maturation and also blastocyst development. Activation of SHP2 regulates multicellular differentiation, proliferation and survival through numerous signal pathways. The most prominent pathway is RAS/PI3K and p-AKT signaling cascade, as a result mitogenic effect become enhanced. Oocytes were cultured in cisplatin an anticancer drug, but selective activator of SHP2 and our grouping were SOF medium alone, SOF + EGF, SOF + CISPLATIN 0.3 μM, and SOF + EGF + CISPLATIN 0.3 μM. We evaluated that EGF neutralizes the apoptotic effect of cisplatin as well as maintain the high expression of SHP2, as a result blastocyst development become boosted up. We also found that inhibition of SHP2 with its specific inhibitor PHPS1 5 μM decreases the blastocyst development and neutralizes growth factors effect. The developmental ability and quality of bovine embryos were determined by assessing their cell number, gene expression, immunofluorescence, and immunoblot. The differences in embryo development between experimental groups were analyzed by one-way ANOVA. Our results show that SHP2 have significant effect on MAP kinase pathways which expand the cumulus cells during oocyte maturation and blastocyst development as compare to inhibition of SHP2 with PHPS1. SHP2 not only transduce the signaling of epidermal growth factor but it also has a role in signal transduction of FGF and IGF. The expression of ERK, PI3K/p-AKT and mTOR was increased with EGF, but with the treatment of SHP2 inhibitor the expression of these genes become drop done. So we can conclude from these results that SHP2 is important for oocyte maturation as well as for blastocyst development.
        2.
        2018.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study aimed to produce high-quality blastocysts and establish appropriate microinjection conditions for the introduction of target gene. First, we identified embryo development to the blastocyst stage after microinjection using the CRISPR/Cas9 system on the Cas9 protein or mRNA. As a result, we confirmed that blastocyst development in the Cas9 mRNA injected group significantly increased when compared to the Cas9 protein injected group (p<0.05). However, the blastocyst gene targeting rate increased in the Cas9 protein injected group when compared to the Cas9 mRNA injected group (p<0.05). Next, we treated the injection medium with 10 μg/ml of cytochalasin B (CB), and the microinjected embryos were cultured in CR1-aa medium supplemented with 0.1 μM of melatonin (Mela). Consequently, the blastocyst formation rate significantly increased in the CB treated group (p<0.05). After microinjecting embryos with the CB treated injection medium, we investigated blastocyst formation and quality via Mela treatment. Consequently, the Mela treated group demonstrated significantly increased blastocyst formation rates when compared to the non-treated group (p<0.05). Furthermore, immunofluorescence assay using RAD51 (DNA repair detection protein) and H2AX139ph (DNA damage detection protein) showed an increase in RAD51 positive cells in Mela treated embryos. Therefore, we verified the improvement in knock-in efficiency in microinjected bovine embryos using Cas9 protein. These results also demonstrated that the positive effect of the CB and Mela treatments improved the embryonic developmental competence and blastocyst qualities in genetically-edited bovine embryos.
        4,200원
        7.
        2002.11 구독 인증기관·개인회원 무료
        The purpose of this study was to investigate the warming temperature and exposed time on the post-thaw survival rate and viability of bovine blastocyst cryopreserved by GMP vitrification. Groups of three bovine IVP blastocysts were sequentially placed into vitrification solution before being loaded into the GMP straws and immersed into LNwithin 20 to 25 sec. The warming rate was increased 2 times of warming temperature for improvement of post-thaw survival rates. The frozen embryos were warmed either at 35 or 70 for 1 or 2 sec and then diluted in sucrose solution. Post-thaw blastocysts were serially washed in 0.25 and 0.15 M sucrose in holding medium (HM: TCM199 supplemented with 10% FCS) and TCM-199 for each 5 min, respectively, and then cultured in TCM199 for 24 h. The rate of re-expanded blastocyst was significantly different fer 35 and 70 warming temporature (76.4 vs. 89.3%; P<0.05). The rate of re-expanded blastocyst at 70 for 1 sec was significantly higher than that for 2 sec (91.1 vs. 70.9%; P<0.05). The number of nuclei counted were significantly different among control, 35 and 70 (1218.5 vs. 10411.7 vs. 11410.3; P<0.05). These results indicated that the increasing of warming rate can provide high survival rates of bovine IVP blastocysts. Especially, the best viability of post-thaw blastocyst could be thaw at 70 for 1 sec. The warming temperature and exposed time far warming was considered to be limiting factors to the viability of bovine IVP embryos. he purpose of this study was to investigate the warming temperature and expose.
        16.
        1999.06 KCI 등재 서비스 종료(열람 제한)
        소 배반포로부터 배아주 (embryonic stem, ES) 유사세포를 분리하기 위해서는 영양외배엽 (trophectoderm, TE) 세포를 제거하는 것이 효과적이다. 따라서 본 실험은 효과적으로 TE를 제거하기 위한 calcium ionophore A23187 (CIPA) 처리조건을 확립하고, 분리해낸 ES 유사세포의 in vitro 다능성 (pluripotency)을 검증하고자 수행하였다. CIPA 농도 및 처리시간을 달리 하였을 때 50 M에서