검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 32

        1.
        2024.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Si-based anodes are promising alternatives to graphite owing to their high capacities. However, their practical application is hindered by severe volume expansion during cycling. Herein, we propose employing a carbon support to address this challenge and utilize Si-based anode materials for lithium-ion batteries (LIBs). Specifically, carbon supports with various pore structures were prepared through KOH and NaOH activation of the pitch. In addition, Si was deposited into the carbon support pores via SiH4 chemical vapor deposition (CVD), and to enhance the conductivity and mechanical stability, a carbon coating was applied via CH4 CVD. The electrochemical performance of the C/Si/C composites was assessed, providing insights into their capacity retention rates, cycling stability, rate capability, and lithium-ion diffusion coefficients. Notably, the macrostructure of the carbon support differed significantly depending on the activation agent used. More importantly, the macrostructure of the carbon support significantly affected the Si deposition behavior and enhanced the stability by mitigating the volume expansion of the Si particles. This study elucidated the crucial role of the macrostructure of carbon supports in optimizing Si-based anode materials for LIBs, providing valuable guidance for the design and development of high-performance energy-storage systems.
        4,300원
        2.
        2024.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, carbon coating was carried out by physical vapor deposition (PVD) on SiOx surfaces to investigate the effect of the deposited carbon layer on the performance of lithium-ion batteries as a function of the asphaltene content of petroleum residues. The petroleum residue was separated into asphaltene-free petroleum residue (ASF) and asphaltene-based petroleum residue (AS) containing 12.54% asphaltene by a solvent extraction method, and the components were analyzed. The deposited carbon coating layer became thinner, with the thickness decreasing from 15.4 to 8.1 nm, as the asphaltene content of the petroleum residue increased, and a highly crystalline layer was obtained. In particular, the SiOx electrode carbon-coated with AS exhibited excellent cycling performance with an initial efficiency of 85.5% and a capacity retention rate of 94.1% after 100 cycles at a current density of 1.0 C. This is because the carbon layer with enhanced crystallinity had sufficient thickness to alleviate the volume expansion of SiOx, resulting in stable SEI layer formation and enhanced structural stability. In addition, the SiOx electrode exhibited the lowest resistance with a low impedance of 23.35 Ω, attributed to the crystalline carbon layer that enhanced electrical conductivity and the mobility of Li ions. This study demonstrated that increasing the asphaltene content of petroleum residues is the simplest strategy for preparing SiOx@C anode materials with thin, crystalline carbon layers and excellent electrochemical performance with high efficiency and high rate performance.
        4,200원
        3.
        2024.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        With the emergence of the new energy field, the demand for high-performance lithium-ion batteries (LIBs) and green energy storage devices is growing with each passing day. Carbon nanotubes (CNTs) exhibit tremendous potential in application due to superior electrical and mechanical properties, and the excellent lithium insertion properties make it possible to be LIBs anode materials. Based on the lithium insertion mechanism of CNTs, this paper systematically and categorically reviewed the design strategies of CNTs-based composites as LIBs anode materials, and summarized in detail the enhancement effect of CNTs fillers on various anode materials. More importantly, the superiorities and limitations of various anode materials for LIBs were evaluated. Finally, the research direction and current challenges of the industrial application of CNTs in LIBs were prospected.
        6,300원
        4.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The raw material selected for this research was Brazil chestnut shells (BCs), which were utilized to gain porous carbon as a positive electrode for lithium–sulfur batteries (LSBs). The effects of N/S co-doped on the electrochemical properties of porous carbon materials were studied using thiourea as nitrogen and sulfur sources. The experimental results indicate that the N/S co-doped carbon materials have a higher mesopore ratio than the undoped porous carbon materials. The porous carbon material NSPC-2 has a lotus-like structure with uniform pore distribution. The N and S doping contents are 2.5% and 5.4%. The prepared N/S co-doped porous carbon materials were combined with S, respectively, and three kinds of sulfur carbon composites were obtained. Among them, the composite NSPC-2/S can achieve the initial specific discharge capacity of 1018.6 mAh g− 1 at 0.2 C rate. At 1 C rate, the initial discharge capacity of the material is 730.6 mAh g− 1, and the coulomb efficiency is 98.6% and the capacity retention rate is 71.5% after 400 charge–discharge cycles.
        4,600원
        5.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The complexation of silicon with carbon materials is considered an effective method for using silicon as an anode material for lithium-ion batteries. In the present study, carbon frameworks with a 3D porous structure were fabricated using metal–organic frameworks (MOFs), which have been drawing significant attention as a promising material in a wide range of applications. Subsequently, the fabricated carbon frameworks were subjected to CVD to obtain silicon-carbon complexes. These siliconcarbon complexes with a 3D porous structure exhibited excellent rate capability because they provided sufficient paths for Li-ion diffusion while facilitating contact with the electrolyte. In addition, unoccupied space within the silicon complex, combined with the stable structure of the carbon framework, allowed the volume expansion of silicon and the resultant stress to be more effectively accommodated, thereby reducing electrode expansion. The major findings of the present study demonstrate the applicability of MOF-based carbon frameworks as a material for silicon complex anodes.
        4,500원
        6.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Refined structured tin dioxide gets the amount of attraction because of its low cost and stability. The C@SnO2 nanospheres with mesoporous structures were produced using the hard template method in this work. The C@SnO2 is primarily gained attributed to the dehydration condensation of C6H12O6 and the hydrolysis of SnCl4 ·5H2O. The morphology of the C@SnO2 was analyzed by physical characterization and the diameter of the obtained C@SnO2 was around 138 nm. When C@SnO2 was applied to lithium-ion batteries as anode material, it performed outstanding electrochemical properties, with a capacity of 735 and 539 mA h g− 1 maintained at 1000 and 2000 mA g− 1, respectively. Furthermore, it exhibits favorable discharge/ charge cycle stability. This is probably because of the more chemically redox active sites provided by C@SnO2 nanocomposites and it also allows fast ion diffusion and electron migration.
        4,000원
        7.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Transition metal chalcogenides are promising cathode materials for next-generation battery systems, particularly sodium-ion batteries. Ni3Co6S8-pitch-derived carbon composite microspheres with a yolk-shell structure (Ni3Co6S8@C-YS) were synthesized through a three-step process: spray pyrolysis, pitch coating, and post-heat treatment process. Ni3Co6S8@C-YS exhibited an impressive reversible capacity of 525.2 mA h g-1 at a current density of 0.5 A g-1 over 50 cycles when employed as an anode material for sodium-ion batteries. However, Ni3Co6S8 yolk shell nanopowder (Ni3Co6S8-YS) without pitch-derived carbon demonstrated a continuous decrease in capacity during charging and discharging. The superior sodium-ion storage properties of Ni3Co6S8@C-YS were attributed to the pitchderived carbon, which effectively adjusted the size and distribution of nanocrystals. The carbon-coated yolk-shell microspheres proposed here hold potential for various metal chalcogenide compounds and can be applied to various fields, including the energy storage field.
        4,000원
        8.
        2023.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        To develop a high capacity lithium secondary battery, a new approach to anode material synthesis is required, capable of producing an anode that exceeds the energy density limit of a carbon-based anode. This research synthesized carbon nano silicon composites as an anode material for a secondary battery using the RF thermal plasma method, which is an ecofriendly dry synthesis method. Prior to material synthesis, a silicon raw material was mixed at 10, 20, 30, 40, and 50 wt% based on the carbon raw material in a powder form, and the temperature change inside the reaction field depending on the applied plasma power was calculated. Information about the materials in the synthesized carbon nano silicon composites were confirmed through XRD analysis, showing carbon (86.7~52.6 %), silicon (7.2~36.2 %), and silicon carbide (6.1~11.2 %). Through FE-SEM analysis, it was confirmed that the silicon bonded to carbon was distributed at sizes of 100 nm or less. The bonding shape of the silicon nano particles bonded to carbon was observed through TEM analysis. The initial electrochemical charging/ discharging test for the 40 wt% silicon mixture showed excellent electrical characteristics of 1,517 mAh/g (91.9 %) and an irreversible capacity of 133 mAh/g (8.1 %).
        4,000원
        9.
        2022.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Silicon oxide (SiOx) has been considered one of the most promising anode materials for lithium-ion batteries due to having a higher capacity than the commercial graphite anodes. However, its practical application is hampered by very large volume variations. In this work, pyrolysis fuel oil is the carbon coating precursor, and physical vapor deposition (PVD) is performed on SiOx at 200 and 400 °C (SiOx@C 200 and SiOx@C 400), followed by carbonization at 950 °C. SiOx@C 200 has a carbon coating layer with a thickness of ~ 20 nm and an amorphous structure, while that of SiOx@C 400 is approximately 10 nm thick and has a more semigraphitic structure. The carbon-coated SiOx anodes display better charge–discharge performance than the pristine SiOx anode. In particular, SiOx@C 200 shows the highest reversible capacity compared with the other samples at high C-rates (2.0 and 5.0 C). Moreover, SiOx@C 200 exhibits excellent cycling stability with a capacity retention of 90.2% after 80 cycles at 1.0 C. This result is ascribed to the suppressed volume expansion by the PFO carbon coating on SiOx after PVD.
        4,000원
        10.
        2021.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The high level of lithium storage in synthetic porous carbons has necessitated the development of accurate models for estimating the specific capacity of carbon-based lithium-ion battery (LIB) anodes. To date, various models have been developed to estimate the storage capacity of lithium in carbonaceous materials. However, these models are complex and do not take into account the effect of porosity in their estimations. In this paper, a novel model is proposed to predict the specific capacity of porous carbon LIB anodes. For this purpose, a new factor is introduced, which is called normalized surface area. Considering this factor, the contribution of surface lithium storage can be added to the lithium stored in the bulk to have a better prediction. The novel model proposed in this study is able to estimate the lithium storage capacity of LIB anodes based on the porosity of porous carbons for the first time. Benefiting porosity value (specific surface area) makes the predictions quick, facile, and sensible for the scientists and experts designing LIBs using porous carbon anodes. The predicted capacities were compared with that of the literature reported by experimental works. The remarkable consistency of the measured and predicted capacities of the LIB anodes also confirms the validity of the approach and its reliability for further predictions.
        4,000원
        11.
        2018.07 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Free-standing electrodes of CuO nanorods in carbon nanotubes (CNTs) are developed by synthesizing porous CuO nanorods throughout CNT webs. The electrochemical performance of the free-standing electrodes is evaluated for their use in flexible lithium ion batteries (LIBs). The electrodes comprising CuO@CNT nanocomposites (NCs) were characterized by charge-discharge testing, cyclic voltammetry, and impedance measurement. These structures are capable of accommodating a high number of lithium ions as well as increasing stability; thus, an increase of capacity in long-term cycling and a good rate capability is achieved. We demonstrate a simple process of fabricating free-standing electrodes of CuO@ CNT NCs that can be utilized in flexible LIBs with high performance in terms of capacity and cycling stability.
        4,000원
        13.
        2015.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, several kinds of active carbons with high specific surface area and micro pore structure were prepared from the coconut shell charcoal using chemical activation method. The physical property of prepared active carbon was investigated by experimental variables such as activating chemical agents to char coal ratio, flow rate of inert gas and temperature. It was shown that chemical activation with KOH and NaOH was successfully able to make active carbons with high surface area of 1900~2500 m2/g and mean pore size of 1.85~2.32 nm. The coin cell using water-based binder in the electrolyte of LiPF6 dissolved in mixed organic solvents (EC:DMC:EMC=1:1:1 vol%) showed better capacity than that of oil-based binder. Also, it was found that the coin cell of water-based binder shows an improved cycling performance and coulombic efficiency.
        4,000원
        14.
        2015.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The composite of porous silicon (Si) and amorphous carbon (C) is prepared by pyrolysis of a nano-porous Si + pitch mixture. The nano-porous Si is prepared by mechanical milling of magnesium powder with silicon monoxide (SiO) followed by removal of MgO with hydrochloric acid (etching process). The Brunauer-Emmett-Teller (BET) surface area of porous Si (64.52 m2g−1) is much higher than that before etching Si/MgO (4.28 m2g−1) which indicates pores are formed in Si after the etching process. Cycling stability is examined for the nano-porous Si + C composite and the result is compared with the composite of nonporous Si + C. The capacity retention of the former composite is 59.6% after 50 charge/discharge cycles while the latter shows only 28.0%. The pores of Si formed after the etching process is believed to accommodate large volumetric change of Si during charging and discharging process.
        4,000원
        15.
        2014.07 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Amorphous agglomerates of carbon nanospheres (CNS) with a diameter range of 10-50 nm were synthesized using the solution combustion method. High-resolution transmission elec-tron microscopy (HRTEM) revealed a densely packed high surface area of SP2-hybridized carbon; however, there were no crystalline structural components, as can be seen from the scanning electron microscopy, HRTEM, X-ray diffraction, Raman spectroscopy, and ther-mal gravimetric analyses. Electrochemical and thermo catalytic decomposition study results show that the material can be used as a potential electrode candidate for the fabrication of energy storage devices and also for the production of free hydrogen if such devices are used in a fluidized bed reactor loaded with the as-prepared CNS as the catalyst bed.
        4,000원
        16.
        2014.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Silicon-carbon composite was prepared by the magnesiothermic reduction of mesoporous silica and subsequent impregnation with a carbon precursor. This was applied for use as an anode material for high-performance lithium-ion batteries. Well-ordered mesoporous silica(SBA-15) was employed as a starting material for the mesoporous silicon, and sucrose was used as a carbon source. It was found that complete removal of by-products (Mg2Si and Mg2SiO4) formed by side reactions of silica and magnesium during the magnesiothermic reduction, was a crucial factor for successful formation of mesoporous silicon. Successful formation of the silicon-carbon composite was well confirmed by appropriate characterization tools (e.g., N2 adsorption-desorption, small-angle X-ray scattering, X-ray diffraction, and thermogravimetric analyses). A lithium-ion battery was fabricated using the prepared silicon-carbon composite as the anode, and lithium foil as the counter-electrode. Electrochemical analysis revealed that the silicon-carbon composite showed better cycling stability than graphite, when used as the anode in the lithium-ion battery. This improvement could be due to the fact that carbon efficiently suppressed the change in volume of the silicon material caused by the charge-discharge cycle. This indicates that silicon-carbon composite, prepared via the magnesiothermic reduction and impregnation methods, could be an efficient anode material for lithium ion batteries.
        4,000원
        17.
        2010.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Different oxidation treatments on CNTs using diluted 4.0 M H2SO4 solution at room temperature and or at 90℃ reflux conditions were investigated to elucidate the physical and chemical changes occurring on the treated CNTs, which might have significant effects on their performance as catalyst supports in PEM fuel cells. Raman spectroscopy, X-ray diffraction and transmission electron microscope analyses were made for the acid treated CNTs to determine the particle size and distribution of the CNT-supported Pt-Ru nanoparticles. These CNT-supported Pt-based nanoparticles were then employed as anode catalysts in PEMFC to investigate their catalytic activity and single-cell performance towards H2 oxidation. Based on PEMFC performance results, refluxed Pt-Ru/CNT catalysts prepared using CNTs treated at 90℃ for 0.5 h as anode have shown better catalytic activity and PEMFC polarization performance than those of the commercially available Pt-Ru/C catalyst from ETEK and other Pt-Ru/CNT catalysts developed using raw CNT, thus demonstrating the importance of acid treatment in improving and optimizing the surface properties of catalyst support.
        4,000원
        18.
        2009.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Si-C composite with hollow spherical structure was synthesized using ultrasonic treatment of organosilica powder formed by hydrolysis of phenyltrimethoxysilane. The prepared powder was pyrolyzed at various temperatures ranging from 900 to 1300 ˚C under nitrogen atmosphere to obtain optimum conditions for Li-ion battery anode materials with high capacity and cyclability. The XRD and elemental analysis results show that the pyrolyzed Si/C composite at 1100 ˚C has low oxygen and nitrogen levels, which is desirable for increasing the electrochemical capacity and reducing the irreversible capacity of the first discharge. The solid Si-C composite electrode shows a first charge capacity of ~500 mAhg-1 and a capacity fade within 30 cycles of 0.93% per cycle. On the other hand, the electrochemical performance of the hollow Si-C composite electrode exhibits a reversible charge capacity of ~540 mAhg-1 with an excellent capacity retention of capacity loss 0.43% per cycle up to 30 cycles. The improved electrochemical properties are attributed to facile diffusion of Li ions into the hollow shell with nanoscale thickness. In addition, the empty core space provides a buffer zone to relieve the mechanical stresses incurred during Li insertion.
        4,000원
        19.
        2007.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Carbon/silicon composites were synthesized by mixing silicon powders with petroleum pitch and subsequent heat-treatment. The resultant composites were composed of carbon and nano-size crystalline silicon identified by XRD and EDX. FIB images and SEM images were taken respectively to detect the existence of silicon impregnated in carbon and the distribution of silicon on the carbon surface. The obtained carbon/silicon materials were assembled as half cell anodes for lithium ion secondary battery and their electrochemical properties were tested. The pitch/silicon composite (3 : 1 wt. ratio) heat treated at 1000℃ and mixed with 55.5 wt.% of graphite showed relatively good electrochemical properties such as the initial efficiency of 78%, the initial discharge capacity of 605 mAh/g, and the discharge capacity of 500 mAh/g after 20 cycles.
        4,000원
        20.
        2007.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Carbon materials of various morphologies were synthesized by pyrolysis of Soap-nut seeds (Sapindus mukorossi), Jack Fruit seeds (Artocarpus heterophyllus), Date-seeds (Phoenix dactylifera), Neem seeds (Azadirachta indica), Tea leaves (Ehretia microphylla), Bamboo stem (Bambusa bambus) and Coconut fiber (Cocos nucifera), without using any catalyst. Carbon materials thus formed were characterized by SEM XRD and Raman. Carbon thus synthesized varied in size (in μm) but all showed highly porous morphology. These carbon materials were utilized as the anode in Lithium secondary battery. Amongst the various precursors, carbon fibers obtained from Soap-nut seeds (Sapindus mukorossi) and Bamboo stem (Bambusa bambus), even after 100th cycles, showed the highest capacity of 130.29 mAh/g and 92.74 mAh/g respectively. Morphology, surface areas and porosity of carbon materials obtained from these precursors were analyzed to provide interpretation for their capacity to intercalate lithium. From the Raman studies it is concluded that graphitic nature of carbon materials assist in the intercalation of lithium. Size of cavity (or pore size of channels type structure) present in carbon materials were found to facilitate the intercalation of lithium.
        4,000원
        1 2