제지 공정 과정에서 슬러지를 소각할 때 생성되는 제지애쉬를 도로 하부 동공 보수 재료인 유동성 채움재의 재료로 재 활용 가능성에 대하여 실험적으로 평가하였다. 유동성 채움재는 플로우 값으로 대표되는 유동성, 압축강도 및 블리딩률 에 의해 평가됨에 따라 해당 특성에 대하여 시험 및 평가를 진행하였다. 제지애쉬의 화학적 성분이 강도 발현을 위한 시 멘트와 유사한 점에 기반하여 제지애쉬를 시멘트 중량비의 0~40% 범위에서 치환하여 페이스트 혼합물을 제작하였다. 이 후, 플로우 및 압축강도 시험을 수행하여 제지애쉬의 적정 치환 범위를 선정하였다. 이후, 시멘트-제지애쉬 페이스트 혼 합물에 잔골재 및 굵은 골재를 혼합하여 유동성 채움재(CLSM: Controlled Low Strength Material) 혼합물을 배합하고 플로 우, 압축강도, 블리딩 시험을 실시하였다. 시험 결과 제지애쉬 치환율이 증가함에 따라 혼합물의 유동성 및 압축강도가 감소하였으며, 이는 제지애쉬의 높은 수분 흡수율에 의한 영향으로 판단된다. 혼합물의 적정 배합을 통하여 소정의 플로 우, 압축강도 및 블리딩률 기준을 만족할 수 있었으며, 이를 통해 제지애쉬의 유동성 채움재 활용 가능성을 확인하였다.
Cellular myxoma is an uncommon type of myxoid benign tumor, predominantly occurring in adult female patients aged >40 years. This report aims to document a case of cellular myxoma that occurred in the buccal mucosa. Compared to intramuscular myxomas, cellular myxoma demonstrates hypercellularity and vascularity. Its manifestation in the soft tissue of the head and neck area is exceptionally rare. Generally, cellular myxoma manifests as a firm and immovable mass covered with normal oral mucosa, with no associated clinical symptoms. Homogenous low signal intensity on T1-weighted scans and high-signal intensity on T2-weighted magnetic resonance scans reveal cellular myxoma, as most lesions show well-defined margins and heterogeneous contrast enhancement. The significant histologic features include a focal or diffuse increase in cellularity with fibroblast-like cells and vascularity with an abundant collagenous matrix. Our presented case reflects these facts examinations, based on which a final diagnosis of cellular myxoma was made. Immunohistochemistry revealed locally and diffusely positive SMA and CD34. The clinical tendency of cellular myxoma with hypercellularity may affect the production of myxoid and collagenous substrates, and if complete resection is not performed, the possibility of local recurrence in the primarily affected region remains. Hence, complete surgical excision was performed under general anesthesia, and follow-up until a year after treatment revealed no observed recurrence. To achieve precise diagnosis and complete treatment without local recurrence, several diagnostic examinations should be considered.
Background : Mucoepidermoid carcinoma (MEC) is the most common primary epithelial malignant salivary gland tumor in both adults and children. Histological grading of MEC is subjective, but plays an important role in predicting patient prognosis. Immunohistochemistry can accurately diagnose diseases and help with treatment and prognosis. The review of this paper was intended to be helpful in the differential diagnosis of mucinous epidermoid carcinoma. Methods : A PubMed search was carried out. Well-known biomarkers for mucoepidermoid carcinoma were searched in PubMed, and their differences with oral squamous cell carcinoma were compared. Results : When PubMed searched “oral mucoepidermoid carcinoma, biomarker”, a total of 241 papers were found, among which cytokeratin(22), Muc1(membrane-bound mucin1, 9), Muc4( membrane-bound mucin4, 6), Muc5ac (membrane-bound mucin5ac, 4), Muc5b (membrane-bound mucin5b, 3), p63 (15), PCNA (15), p53 (20), EGFR (Epidermal growth factor receptor, 21), c-erbB2 (HER2, 14), and pAKT (2) were searched and investigated. The biomarkers retrieved above were compared with those expressed in squamous cell carcinoma. Conclusion : Due to the above biomarkers, it is possible to classify mucoepidermoid carcinoma and differentiate it from other salivary gland tumors or oral squamous cell carcinoma.
Non-keratinizing squamous cell carcinoma (NKSCC) is a rare malignancy of the nose and paranasal sinuses which is characterized by a unique anastomosing ribbon-like growth pattern with absent of limited maturation and keratinization. NKSCC accounts for 10-27% of sinonasal squamous cell carcinomas and some of the NKSCCs are reported to be associated with high risk-HPV infection. Advanced lesion can involve the oral cavity with oral symptoms of palatal bulging, surface ulceration mimicking salivary gland tumors. Herein, we report a case of NKSCC of a 46-year old male, which clinically presented as a bulging mass on the mid palate and mimicked a palatal salivary gland tumor. We reviewed the clinical and histopathological considerations required for differential diagnosis of sinonasal carcinoma involving the oral cavity.
최근 국내 원자력발전소의 격납건물 벽체와 Containment Liner Plate(CLP) 사이에서 다양한 크기의 공극이 발견됨에 따라 원전 격납건물의 보수를 위해 내부 공극의 분포와 크기를 정밀하게 평가할 수 있는 진단기법의 개발이 요구되고 있다. 이에 따라 이 연구에서 는 격납건물 벽체에서의 탄성파 전파거동을 계산하는 2차원 유한요소해석 기법을 제시한다. 격납건물 벽체를 기반으로 해석영역을 구성하고 경계면에서의 반사파를 제거하기 위해 수치적 파동흡수 경계층인 perfectly matched layer를 도입하였다. Galerkin 기반 혼합 유한요소법을 이용해 2차원 유한영역에서 탄성파 파동방정식의 해를 구하여 충격하중에 대한 격납건물 벽체의 변위와 응력을 계산하였다. 제시한 수치적 기법을 이용하여 격납건물 콘크리트 벽체의 CLP 부착 유무와 공동의 위치 및 크기 변화에 따른 탄성파 전파거 동을 살펴보았다. 이 연구의 결과는 원전 격납건물 내부의 공동을 진단하는 탄성파 전체파형 역해석 기법 개발에 활용될 수 있다.
Leiomyoma is a Benign tumor that develops in smooth muscles and is known to occur more in women in age between 40s and 50s. The most common site of leiomyoma is uterine (95 %). It occurred in oral region is very rare about 0.065 % and usually developed in upper and lower lips, palatal site, buccal site and tongues. The prognosis of leiomyoma is very positive. The recurrence rate is extremely low to 2 % below. In present study, we report a 78 year old female with a lesion located in temporomandibular joint cavity which was suspected as a malignant tumor. Additionally, this paper reports contains a literature review of oral leiomyoma. Rare location with painless leiomyoma of present case will be considered to be caution.
A 7-year-old, intact, female Siberian husky was presented to the Veterinary Medical Center of Chungbuk National University because of vomiting and diarrhea after a fight with a cohabiting dog. Physical examination, radiography, abdominal ultrasonography, and laboratory examination were performed. The dog was diagnosed with pyometra and 10% dehydration. On electrolyte, Na and Cl ion concentration were lower than normal values and Ca ion concentration was slightly lower than normal values. On blood chemistry, blood urea nitrogen and alkaline phosphatase value were extremely higher than normal values. Neutrophil was observed as hypersegmentation. On ultrasonography, enlarged uterine body was observed. Uterus was enlarged and filled with echogenic fluid that is seemed to be pus. Uterine horn was rubbing the bladder. In bacterial culture, the colony morphology was smooth, mucoid, and hemolytic. Also, on molecular diagnosis test, both samples from uterine and abdominal fluid were confirmed to be E. coli. This case describes that uterine pus was leakage to abdominal cavity through oviduct, and pus leakage from uterus may be cause septic peritonitis and death. Also, this case must be considered that physical event such as fight against cohabiting dog, strenuous exercise and kiss-off can cause uterine rupture or pus leakage through oviduct from uterus in dog with pyometra.
PURPOSES: The objective of this study is to evaluate the structural capacity of asphalt pavement in subsurface cavity sections using falling weight deflectometer (FWD) backcalculation method.
METHODS: It is necessary to analyze the reduction of structural capacity in asphalt pavements due to the occurrence of subsurface cavities. The FWD testing was conducted on the cavity and intact asphalt pavement in the city of Seoul. The GAPAVE, backcalculation program for FWD deflections, was utilized to determine the layer moduli in asphalt pavements. The remaining life of asphalt pavements in cavity sections were predicted using the pavement performance model for fatigue cracking. The backcalculated layer moduli between cavity and intact sections were compared to determine the reduction of structural capacity due to subsurface cavity. The relationship between the reduction of layer modulus and cavity depth/length was analyzed to estimate the effect of cavity characteristics on the structural capacity degradation.
RESULTS: According to the FWD backcalculation results, the modulus of asphalt layer, subbase, and subgrade in cavity sections are generally lower than those in intact sections. In the case of asphalt layers, the backcalculated modulus in cavity section was reduced by 50% compared to intact section. A study for the prediction of remaining life of cavity section shows that the occurrence of subsurface cavity induces the decrease of the pavement life significantly. It is found that there is no close relationship between the backcalculated modulus and cavity length. However, the reduction of asphalt layer modulus is highly correlated with the cavity depth and was found to increase with the decrease of cavity depth.
CONCLUSIONS : This reduction of structural capacity due to the occurrence of cavities underneath asphalt pavements was determined using FWD backcalculation analysis. In the future, this approach will be utilized to establish the criteria of road collapse risk and predict the remaining life of cavity sections under numerous varied conditions.
Differential diagnosis of the malignant lesion and the benign lesion is critically important for the precise treatment. A clinician should diagnose in a comprehensive manner considering clinical, radiological, and histopathological perspectives. The lesion in the oral cavity in this study was clinically and radiologically malignant. However, the lesion was histopathologically benign. Surgical intervention was not performed except biopsy. The lesion improved after about one month of supportive medication after the biopsy. The importance of decision making process was emphasized in this report.
PURPOSES: The purpose of this study is to evaluate and improve the potential risk of road cave-ins due to subsurface cavities based on the deflection ratio measured with light falling weight deflectometer (LFWD) tests.
METHODS : A cavity database for Seoul was developed and sorted. LFWD tests based on the database were conducted on pavement sections with and without road cavities detected by ground-penetrating radar (GPR) tests; after excavating the area, the cavity sizes were measured. The deflection ratio was applied and analyzed by cavity management grade methods of Japan and Seoul.
RESULTS : The results of comparative analysis show that the deflection method can detect road cavities in areas of the narrow road (or in narrow areas of the road). The average deflection ratio of the cavity sections to the robust sections were 2.48 for high-risk cavities, 1.85 for medium-risk level cavities, and 1.49 for low-risk cavities. Risk levels in Japan and Seoul were reclassified according to the deflection ratios.
CONCLUSIONS : LFWD test results can be applied to verify and improve the subsurface cavity risk level by comparing maximum deflection and deflection ratio between cavity area and non-cavity area at the loading center. LFWD devices also have more advantages compared with larger NDT(Nondestructive test) because FWD and GPR encounter difficulties in traffic control and they could not get in a narrow roads.
PURPOSES: The purpose of this study is to verity the applicability of a portable small-loop electromagnetic survey method to underground cavity detection.
METHODS: In order to evaluate applicability of the method, a test bed comprised of four sections was constructed. The two sizes of the four cavities artificially formed at two depths were contained in the test bed. Each cavity was positioned at center of each 6 m long section. Four types of pavement materials such as unpaved ground, bricks, asphalt, and concrete were used at every section. The portable small-loop electromagnetic device measured electrical conductivity as an exploration signal that varied according to the electrical properties underground. The electrical conductivity was converted into two-dimensional electrical resistivity distribution sections using an inverse analysis program.
RESULTS : The results showed that the electrical resistivity of the non-cavity area was lower than that of the cavity area. The electrical resistivity increased as the measurement device moved closer to the cavity position. It was also found that the electrical resistivity values were not significantly affected by pavement type. The small cavity with diameter of 35 cm could be detected up to 1.2 m depth.
CONCLUSIONS: Therefore, it was verified that the portable small-loop electromagnetic survey method is applicable to the detection of cavities in sections where ground subsidence is expected. This method can be effectively used for small-scale roads such as sidewalks, parkways, and side streets where large exploration equipment cannot enter.
PURPOSES: The objective of this study was to develop an asphalt pavement response model for a subsurface cavity section using the 3D finite element method and a statistical approach.
METHODS: It is necessary to analyze the structural behavior of asphalt pavement with a subsurface cavity to evaluate the degree of risk for a road cave-in. A 3D finite element model was developed to simulate the subsurface cavity underneath asphalt pavement and was verified using the ILLIPAVE program. Finite element analysis was conducted for asphalt pavement sections with different asphalt layer thickness/modulus, and cavity depth and length, to generate the artificial pavement response database. The critical pavement response considered in this study was the tensile strain at the bottom of the asphalt layer because fatigue cracking is the main cause of road cave-in. The relationship between the critical pavement response and influencing factors was investigated using the pavement response database. The statistical regression approach was adopted to develop the asphalt pavement response model for predicting the critical pavement response of asphalt pavement with a subsurface cavity.
RESULTS : It was found from the sensitivity analysis that the asphalt layer thickness or modulus, and cavity depth or length, are the major factors affecting road cave-in incidents involving asphalt pavement. The asphalt pavement response model showed high accuracy in predicting the tensile strain at the bottom of asphalt layer. It was found from the verification study that the R square value between finite element model and pavement response model were 0.969 and 0.978 in the cavity and intact sections, respectively.
CONCLUSIONS: The work reported in this paper was intended to figure out the pavement structural behavior and to develop a pavement response model for the occurrence of cavities underneath asphalt pavement using 3D finite element analysis. In the future, critical pavement response will be utilized to establish the criteria of risk of road cave-in based on various different conditions.
Enterococcus faecalis is a major causative agent of endodontic treatment failure. The purpose of this study was to investigate bactericidal effects of ethanol extract of Garcinia mangostana L. (mangosteen extract) on five strains of E. faecalis that were isolated from human oral cavities. The bactericidal effects of mangosteen extract were assessed by measurement of minimum bactericidal concentration (MBC) value. The cytotoxicity of mangosteen extract on immortalized human gingival fibroblasts, hTERT-hNOF, was determined based on cell counting method. The data revealed the MBC value of mangosteen extract against the E. faecalis strains was 4 ㎍/ml. Additionally, the cell viability of mangosteen extract on hTERT-hNOF was 83.7-89.1% at the 1 to 16 ㎍/ml. These findings indicated that mangosteen extract could be used as a root canal cleaner during management of endodontic treatment failure caused by E. faecalis.
Subsurface cavities in the asphalt pavement which can cause road depression and cave-in accidents influence on the safety of pedestrians and vehicle drivers in the urban area. The existence of subsurface cavity can increase the tensile strain at the bottom of asphalt layer which is an indicator of fatigue cracking potential, and leads to the weakening of the pavement structural capacity. In this study, the finite element (FE) analysis was conducted to examine the relationship between the critical pavement responses and influencing factors, such as cavity depth and size, asphalt layer thickness, and asphalt concrete modulus. The surface deflections and tensile strains calculated from the ABAQUS FE program were compared to those from ILLIPAVE. It is found from this comparison that there are a good relationship between two analysis results. A three dimensional finite element model which is essential to simulate the hexahedral cavity were used to generate the synthetic database of critical pavement responses. To validate the developed model, the deflection data obtained from field Falling Weight Deflectometer (FWD) testing in four different locations were compared to FE deflections. It is found that the center deflections obtained from the FWD testing and FE analysis are similar to each other with an error values of 2.7, 4.4, 5.5, and 11.9 % respectively. The FE model developed in this study seems to be acceptable in simulating actual field cavity condition. On the basis of the data in the database, various analyses were conducted to estimate the effect of influencing factors on the critical pavement responses. It was found that the tensile strain at the bottom of asphalt layer is affected by all the factors but the most affected by the cavity depth and asphalt concrete modulus. Further studies are recommended to properly account for the effect of cavity’s geometry to pavement response.
The Ground Penetrating Radar(GPR) is a typical non-destructive test equipment which is widely used in seeking a cavity or underground facility. Test results are generally expressed 2D monochrome or color images, distribution of the parabolic waveforms are used to determine the existence of cavity and facility. (Fig. 1) But, an analysis method of image may cause errors depending on the knowledge and experience of analyst. In this study, we analyzed the coefficient of correlation between A-Scan data of GPR to judge the existence of cavity located under the pavement layer. The correlation analysis was performed based on the assumption that the relationship of correlation between a number of A-Scan data passing through a non-cavity section is larger than a small number of A-Scan data passing through a cavity section, and relationship of correlation was visualized using Surfer Program. (Fig. 2) In addition, apart from the correlation analysis, we compared the Power spectrum of the A-scan data for the cavity section and non-cavity section. In other words, assuming that the size of the energy changes depending on the existence of the cavity, PSD (Power Spectrum Density) is obtained for all the B-Scan data, and the tendency of the energy size is confirmed using the 3D wireframe map of the Surfer program. (Fig. 3) As a result, the correlation coefficient shows a small tendency in the cavity section and the PSD shows a large tendency, which is intuitively recognized that the energy attenuation in the cavity section is smaller than other material. But, there are some ambiguous sections to judge the tendency clearly, this is estimated to be noise on the underground facility and it is necessary to take measure of mitigating this.