The WRK (Waste Repository Korea bentonite) compacted bentonite medium has been considered as the appropriate buffer material in the Korean SNF (Spent nuclear fuel) repository site. In this study, hydraulic properties of the WRK compacted bentonite core (4.5 cm in diameter and 1.0 cm in length) as the buffer material were investigated in laboratory experiments. The porosity and the entry pressure of the water saturated core at different confining pressure conditions were measured. The average velocity of water flow in the WRK compacted bentonite core was calculated from results of the breakthrough curves of the CsI aqueous solution and the hydraulic conductivity of the core was also calculated from the continuous flow core experiments. Because various gases could be generated by continuous SNF fission, container corrosion and biochemical reactions in the repository site, the gas migration property in the WRK compacted bentonite core was also investigated in experiments. The gas permeability and the average of gas (H2) in the core at different water saturation conditions were measured. Laboratory experiments with the WRK Compacted bentonite core were performed under conditions simulating the DGR environment (confining pressure: 1.5- 20.0 MPa, injection pressure: 1.0-5.0 MPa, water saturation: 0-100%). The WRK Compacted bentonite core was saturated at various confining pressure conditions and the porosity ranged from 27.5% to 43.75% (average: 36.75%). The calculated hydraulic conductivity (K) of the core using experimental results was 8.69×10-11 cm/s. The gas permeability of the core when the water saturation 0~58 % was ranged of 19.81~3.43×10-16 m2, representing that the gas migration in the buffer depends directly on the water saturation degree of the buffer medium. The average gas velocity in the core at 58% of water saturation was 9.8×10-6 m/s, suggesting that the gas could migrate fast through the buffer medium in the SNF repository site. Identification of the hydraulic property for the buffer medium, acquired through these experimental measurements is very rare and is considered to have high academic values. Experimental results from this study were used as input parameter values for the numerical modeling to simulate the long-term gas migration in the buffer zone and to evaluate the feasibility of the buffer material, controlling the radionuclide-gas migration in the SNF repository site.
BNKT Ceramics, one of the representative Pb free based piezoelectric ceramics, constitutes a perovskite(ABO3) structure. At this time, the perovskite structure (ABO3) is in the form where the corners of the octahedrons are connected, and in the unit cell, two ions, A and B, are cations, A ion is located at the body center, B ion is located at each corner, and an anion O is located at the center of each side. Since Bi, Na, and K sources constituting the A site are highly volatile at a sintering temperature of 1100℃ or higher, it is difficult to maintain uniformity of the composition. In order to solve this problem, there should be suppression of volatilization of the A site material or additional compensation of the volatilized. In this study, the basic composition of BNKT Ceramics was set to Bi0.5(Na0.78K0.22)0.5TiO3 (= BNKT), and volatile site (Bi, Na, and K sources) were coated in the form of a shell to compensate additionally for the A site ions. In addition, the physical and electrical properties of BNKT and its coated with shell additives(= @BNK) were compared and analyzed, respectively. As a result of analyzing the crystal structure through XRD, both BNKT(Core) and @BNK(Shell) had perovskite phases, and the crystallinity was almost similar. Although the Curie temperature of the two sintered bodies was almost the same (TC = 290 ~ 300 ℃), it was confirmed that the d33 (piezoelectric coefficient) and Pr (residual polarization) values were different. The experimental results indicated that the additional compensation for a shell additive causes the coarsening, resulting in a decrease in sintering density and Pr(remanent polarization). However, coating shell additives to compensate for A site ion is an effective way to suppress volatilization. Based on these experimental results, it would be the biggest advantage to develop an eco-friendly material (Lead-free) that replaced lead (Pb), which is harmful to the human body. This lead-free piezoelectric material can be applied to a biomedical device or products(ex. earphones (hearing aids), heart rate monitors, ultrasonic vibrators, etc.) and skin beauty improvement products (mask packs for whitening and wrinkle improvement).
Recently the Marangoni convention is supposed to be an important phenomenon that significantly affects the solidification. For understanding the Marangoni convection mechanism, visualizing the convention phenomenon of molten tin with ultrasonic has been conducted. This paper reports developing a tracer material of micro metal balloon that is used in the molten system. We have succeeded in coating the surface of Shirasu-ballons with nickel by plating process. The obtained metal balloon is spherical and some characterizations were conducted.
6.5wt%Si강판을 낮은 철손실, 고투자율 그리고 자왜가 거의 0으로 우수한 자성재료로 잘 알려져 있다. 본 실험에서는 화학기상증착 (Chemical Vapor Deposition)으로 6.5wt%Si 강판을 만들었다 이 과정은 튜브 노내에서 실리콘의 함량이 낮은 Si강판에 SiCl4가스를 반응시킨다. 이때 SiCl4가스에서 분해된 Si의 원자들은 모재인 강판 표면에 증착되어 표면층에 Si가 풍부한 층을 형성한다. 마지막으로 고온에서 확산과정을 통하여 모재 내부로부터 실리콘의 함량이 균일한 강판을 얻을 수 있다. 0.5mm두께를 갖은 6.5wt%Si 강판의 철손실은 고주파수에서 약 8.92W/kg를 나타냈으며 투자율은 53,300으로 일반 실리콘강판, 즉 2.5wt%Si강판의 투자율 37,100보다 약 두배 가량 증가하였다. 또한 기계적인 특성을 평가하기 위해서 일반 0.5wt%Si강판과 773K의 온도에서 수시간 열처리한 강판을 인장실험 하였다. 따라서 수 시간 열처리한 시편에서 연신율이 증가함을 알 수 있었으며 파단면을 관찰한 결과 입 계파단면이 현저히 감소했음을 알았다
This paper was evaluated manufacturing properties for core material of self-healing capsules using cement powder, it was found that coagulants for coagulation of core materials were important factors in manufacturing core materials.
This paper was evaluated manufacturing properties for core material of self-healing capsules using cement powder, it was found that coagulants for coagulation of core materials were important factors in manufacturing core materials.
본 연구에서는 시멘트 복합체의 균열을 자기치유 할 수 있는 자기치유 캡슐을 제조하기 위한 일환의 기초 연구로써 자기치유 캡슐 용 코어재료에 무기계 기반 코어재료를 적용하기 위하여 액상형태의 무기 소재를 기반으로한 코어재료를 제조하였다. 제조된 무기계 기반 코 어재료는 캡슐화를 진행하기 전에 무기계 기반 코어재료를 직접 시멘트 복합체에 적용하여 균열부의 균열수복 성능뿐만 아니라 시멘트 복합 체의 성능에 미치는 영향을 검토하였다. 평가결과, 무기계 기반 코어재료는 압축 및 부착강도 향상효과가 있는 것을 확인하였으며, 부착, 내흡 수, 내투수 및 동결융해 저항 성능을 가진 것으로 판단된다. 본 논문의 결과를 통하여 자기치유 캡슐용 무기계 기반 코어재료를 적용할 경우에 얻을 수 있는 시멘트 복합체의 성능 및 차후 진보화된 자기치유 캡슐기술의 기반 자료로써 활용하고자 한다.
This paper was examined water resistant performance of cementitious composites applying inorganic liquid type core material as part of a basic study for development of inorganic liquid type self-healing capsule. Results of assessment, inorganic liquid type core material have shown that with a water resistance performance.