검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 440

        1.
        2025.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        To analyze the effect of fire in electric-vehicle battery on concrete cement structure. A scenario evaluation was conducted for fire occurrence due to external influences on lithium battery cells used in electric vehicles. Visual inspection was conducted at each stage of the battery fire, and the fire duration and temperature were measured. The battery temperature rise curve and temperature during fire have been examined previously. The stability of a cement structure was evaluated via X-ray diffraction and SEM analyses of the reaction-product changes with respect to temperature. The battery temperature rise curve shows that the battery begins to change at 200 °C–300 °C. However, the general stage of battery damage cannot be readily confirmed from the literature. The current experiment and literature review indicate that battery fire can cause the fire temperature to increase beyond 1000 °C within a few seconds. The reaction product changes structurally in cement from 300 °C or higher. Many voids are generated owing to the decomposition of Ca(OH)2 and C-S-H gel. The temperature of an electric-vehicle fire increases rapidly to 1000 °C or higher within a few seconds. High temperatures change the reaction products in cement structures, thus creating internal voids and cracks and reducing the stability of the structure; therefore, the appropriate countermeasures must be identified.
        4,000원
        2.
        2024.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Increasing resource use is the primary motivator for the development of technology industries, which is leading to severe consequences, such as the release and disposal of radioactive waste containing radionuclides in the environment. Cesium (137Cs) is one of the most hazardous radionuclides in the environment. In particular, the steel manufacturing process produces hazardous waste in the form of electric arc furnace dust contaminated with 137Cs. In this study, the tolerances of five legume species to different activity concentrations of 137Cs in both seed germination and initial seedling growth were compared. To determine 137Cs tolerance, several parameters related to the growth and development of legumes were measured. Among the five legumes studied, Crotalaria juncea L. was the most 137Cs tolerant at 50,000 Bq·L−1. Sesbania javanica Miq. and Vigna mungo L. Hepper were moderately tolerant to 30,000 Bq·L−1 137Cs. After 10 days, the stress tolerance indices in all legume species decreased by more than 50% at activity concentrations greater than or equal to 20,000 Bq·L−1 137Cs. This approach allows the selection of desirable traits, making more-effective application possible in the phytoremediation of 137Cs through stress tolerance. In conclusion, legumes are promising candidates for the phytoremediation of environmental pollutants.
        4,200원
        3.
        2024.12 구독 인증기관 무료, 개인회원 유료
        This study explores the innovative utilization of a biomimetic electric ray friction nanogenerator (ER-TENG) in combination with electrolysis technology for the remediation of maritime effluent. The ER-TENG is ingeniously crafted with a flexible, planar structure, enabling seamless adaptation to various curved and irregular substrates such as rocks, corals, and shipwrecks on the ocean floor, obviating the necessity for specialized mounting or securing devices. Simulation results regarding the potential distribution between the copper electrode and the PDMS film under different inter-electrode distances indicate that an increase in separation distance is correlated with an enhanced potential difference on the material's surface, exhibiting a linear upward trend, with the maximum potential difference reaching 120 V. When TiO2 nanoparticles are incorporated at a doping mass fraction of 4.65 wt%, the friction nanogenerator attains its peak electrical performance, boasting a peak opencircuit voltage of 123.25 V and a maximum short-circuit current of 13.52 μA, representing increases of 2.73-fold and 2.56-fold in open-circuit voltage and short-circuit current, respectively. At operational frequencies of 1.2 Hz and 1.0 Hz, the initial stage of sterilization rate enhancement proceeds at a moderate pace. However, after 60 minutes of electrolysis, sterilization rates reach 88.12% and 46.36%, respectively. The electrical energy harvested by the ER-TENG facilitates the generation of potent oxidizing chlorine through electrolysis, which effectively eliminates harmful aquatic organisms and pathogens present in ship ballast water.
        4,000원
        4.
        2024.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        해운 산업은 탄소 배출 저감을 위한 다양한 기술적 해결책을 모색하고 있으며, 그중 암모니아(NH3)는 차세대 무탄소 연료로 각 광받고 있다. 암모니아는 이산화탄소(CO2)를 배출하지 않으며, 기존 인프라를 활용해 대규모 운송 및 저장이 가능하다는 장점이 있다. 본 연구는 암모니아를 수소(H2)로 개질하여 연료전지에 공급하고, 이를 통해 전력을 생산하는 하이브리드 전기 추진 시스템의 성능을 평가하 였다. 암모니아-수소 개질기, 수소 연료전지, 배터리로 구성된 이 시스템은 친환경적인 추진 방식이다. 경사 시험(Heel test)은 선박이 실제 항해 중에 겪을 수 있는 10도 경사 상황에서 시스템이 안정적으로 작동하는 평가하기 위해 수행되었다. 시험 결과, 암모니아 개질기는 경사 조건에서도 안정적으로 수소를 생산하였다. 연료전지와 배터리가 결합된 하이브리드 시스템은 부하 변동 상황에서도 효율적으로 전력을 관리하고 안정적인 전력 공급을 유지했다. 특히 경사 상태에서도 시스템 성능 저하 없이 연료전지와 배터리 전력, 전류, 전압의 상호작용이 원활하게 이루어졌음을 확인할 수 있다. 본 연구는 향후 친환경 선박의 핵심 기술로 자리 잡을 수 있는 암모니아 기반 추진 시스템의 안정 성과 성능을 실험적으로 검증하였다는 점에서 그 의미가 있으며, 따라서 본 연구 결과는 해운 산업에서 암모니아 기반 추진 시스템의 사용 화 가능성을 높이는 중요한 기초 자료를 제공할 것으로 기대된다.
        4,000원
        8.
        2024.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        An electric initiator is a component that is located in the thermal battery or propulsion unit to transfer energy first. Initiator tests include X-ray test, non-destructive leak testing, circuit/insulation resistance test, and CBT (Closed Bomb Test). Among them, CBT is a key element in evaluating the performance of initiator, and the reliability of the test results is important for judgment of the required performance. This study conducted inter-laboratory comparative tests to secure the reliability and repeatability & reproducibility of the initiator CBT. A comparative test was conducted with a mass production acceptance test agency to verify whether the reliability was secured.
        4,000원
        9.
        2024.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This paper defines structural and dynamic analysis of a crane used for electric passenger vehicle fire scenarios. The crane model used in the study has a working radius of 9 meters, and under extreme conditions measured with real-world usage in mind, the load at the boom tip is 24.5kN. The boom is assumed to be made of ATOS80, and the pads are assumed to be made of Monomer Casting Nylon. Structural analysis was conducted based on the crane's materials and configuration, and dynamic analysis was performed by dividing the grab method into gripper and hinge types. In the structural analysis, the maximum stress increased as the telescopic boom faced upwards. In the dynamic analysis, the gripper type facing downward showed more stable stress. For the model with an added badge, the structural analysis showed an increase in maximum stress, but the value was negligible, and the maximum stress of the telescopic boom decreased in the dynamic analysis. Based on the analysis results, the suitable materials for the crane are ATOS80 for the lower articulated boom and the telescopic boom, and DOMEX1300 for the upper articulated boom. The gripper type grab method is more stable than the hinge type.
        4,000원
        10.
        2024.10 구독 인증기관·개인회원 무료
        정부에서는 수송부분에서 발생하는 온실가스 감축을 위해 친환경자동차 구매보조금 지급, 개별소비세 감면, 취득세 감면 등의 정책 을 시행함으로 친환경자동차 등록대수는 매년 증가하고 있는 추세이다. 충전 수요에 따른 전기차 충전소 구축을 진행하고 있으나 충 전소 구축이 충전수요 대비 부족하여 충전관련 민원과 이용자들의 불편이 발생하고 있는 실정이다. 하지만 충전소 설치 시 소모되는 재화, 부지 등의 비용을 지속적으로 투입하기에는 한계가 있어 최대효과를 발생시키는 지역에 충전소를 설치하는 방법과 기존 충전소 를 효과적으로 이용하는 방안에 대한 중요성이 대두되고 있다. 따라서 본 연구에서는 급속충전소가 설치 되지 않았다는 가정하에 전 기차 급속충전소 최적입지를 도출하여 실제 충전소 입지와 최적입지를 비교하여 입지적정성을 분석하고, 최적입지에 입지한 충전소와 입지하지 않은 충전소의 충전량을 비교하여 도출된 최적입지의 충전효율성을 검증하고자 한다. 급속충전소 최적입지 선정에는 교통량 을 이용하였으며, 교통량을 “QGIS 생활 SOC 입지분석 툴킷”에 변수로 설정하여 급속충전소 접근성에 따른 최적입지를 1~10등급으로 나누어 도출하였다. 각 등급에 위치한 실제 충전소의 입지적정성을 평가하고 충전소별 충전량을 수집하여 비교하였다. 충전소 입지 등 급과 교통량간의 상관성을 확인하였다.
        11.
        2024.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study involved the heterogenization of a binder pitch (BP) using a small amount of nanocarbon to improve physical properties of the resulting graphite electrode (GE). Heterogenization was carried out by adding 0.5–2.0 wt.% platelet carbon nanofiber (PCNF) or carbon black (CB) to a commercial BP. To evaluate the physical properties of the BPs, we designed a new model graphite electrode (MGE) using needle coke as a filler. The heterogenized binder pitch (HBP) with PCNF or CB clearly increased the coking value by 5–13 wt.% compared to that of the as-received BP. Especially, the model graphite electrodes prepared with HBPs containing 1.0 wt.% PCNF or CB showed significantly improved physical properties compared to the control MGE from the as-received BP. Although the model graphite electrodes prepared with HBPs showed similar properties, they had smaller pore sizes than the control. This indicates that heterogenization of the BP can effectively decrease the pore size in the MGE matrix. Correlating the average pore sizes with the physical properties of the model graphite electrodes showed that, for the same porosity, matrices formed by the HBP with a smaller average pore size can effectively improve the apparent density, tensile strength, and oxidation resistance of the model graphite electrodes.
        4,500원
        12.
        2024.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The present study investigates the impact of freeze–thaw deterioration on the electrical properties and electric-heating capabilities of cement mortar incorporating with carbon nanotubes (CNT) and carbon fibers (CF). Mortar samples, containing 0.5 wt.% CNT and 0.1 wt.% CF relative to the mass of cement, were prepared and subjected to freeze–thaw tests for up to 300 cycles. The electrical properties and electric-heating capability were evaluated every 30 freeze–thaw cycles, and the physicochemical characteristics of the samples were analyzed using X-ray diffraction and mercury intrusion porosimetry. The results indicate a decline in both electrical conductivity and heat-generation capability as the freeze–thaw cycles progress. Furthermore, changes in the pore structure of the mortar samples during the freeze–thaw cycles contributed to damage in the conductive network formed by CNT and CF, resulting in decreased electrical conductivity and heat-generation capabilities of the mortar samples.
        4,200원
        14.
        2024.07 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this work, a series of BaTiO3-based ceramic materials, Ba(Al0.5Nb0.5)xTi1-xO3 (x = 0, 0.04, 0.06, 0.08), were synthesized using a standard solid-state reaction technique. X-ray diffraction profiles indicated that the Al+Nb co-doping into BaTiO3 does not change the crystal structure significantly with a doping concentration up to 8 %. The doping ions exist in Al3+ and Nb5+ chemical states, as revealed by X-ray photoelectron spectroscopy. The frequencydependent complex dielectric properties and electric modulus were studied in the temperature range of 100~380 K. A colossal dielectric permittivity (>1.5 × 104) and low dielectric loss (<0.01) were demonstrated at the optimal dopant concentration x = 0.04. The observed dielectric behavior of Ba(Al0.5Nb0.5)xTi1-xO3 ceramics can be attributed to the Universal Dielectric Response. The complex electric modulus spectra indicated the grains exhibited a significant decrease in capacitance and permittivity with increasing co-doping concentration. Our results provide insight into the roles of donor and acceptor co-doping on the properties of BaTiO3-based ceramics, which is important for dielectric and energy storage applications.
        4,000원
        15.
        2024.07 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, polyimide (PI)-based activated carbon fibers (ACFs) were prepared for application as electrode materials in electric double-layer capacitors by varying the steam activation time for the PI fiber prepared under identical cross-linking conditions. The surface morphology and microcrystal structural characteristics of the prepared PI-ACFs were observed by field-emission scanning electron microscopy and X-ray diffractometry, respectively. The textural properties (specific surface area, pore volume, and pore size distribution) of the ACFs were calculated using the Brunauer–Emmett–Teller, Barrett–Joyner–Halenda, and non-local density functional theory equations based on N2/ 77 K adsorption isotherm curve measurements. From the results, the specific surface area and total pore volume of PI-ACFs were determined to be 760–1550 m2/ g and 0.36–1.03 cm3/ g, respectively. It was confirmed that the specific surface area and total pore volume tended to continuously increase with the activation time. As for the electrochemical properties of PI-ACFs, the specific capacitance increased from 9.96 to 78.64 F/g owing to the developed specific surface area as the activation time increased.
        4,600원
        16.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This paper aims to study the modeling and controller of an electrically driven tractor optimized for energy efficiency under off-road conditions and when subjected to loads such as plowing. The dynamic model design is aimed at a 30kW electric tractor. The vehicle model consists of a 30kW motor, transmission, wheels, and a controller, designed using the commercial software Matlab/Simulink. In order to optimize energy efficiency under load conditions, this paper designs and implements a PID controller focusing on the vehicle's speed and wheel slip. The newly proposed electric tractor modeling and PID controller aim to demonstrate improved energy efficiency through simulation.
        4,000원
        17.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, we developed a new electric low-height beds mechanism with a stable driven rack and pinion by analyzing the current state of existing beds development and supplementing shortcomings of the beds. Structural safety is evaluated through Finite-Element-Analysis using a simulation method applying existing elevate system types and a new type. Furthermore, we designed and manufactured a trial bed with increased variable height considering medical instrument standards to use both for home and hospital. The elevation mechanism suggested in this study could be valuable to electric beds development.
        4,000원
        18.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        전기공사 분리발주 제도는 전기설비의 시공품질 향상과 전기공사업의 경쟁력 강화를 위하여 지난 1976년 도입된 이후 현재까지 운영되고 있다. 국민들의 실 생활과 산업 발전에 필수적인 전기를 효율적이고 안정적으로 사용하기 위해서 는 고품질의 전기설비를 구축하는 것이 요구된다. 제도 도입 이후 전기공사 분 리발주를 통해 당초의 취지에 맞게 시공 품질 향상과 중소기업의 경쟁력 강화 라는 성과를 내며 운영되고 있다. 하지만, 전기공사 분리발주 제도가 완전히 정착되었다고 평가할 수는 없는 상황이다. 국가, 지자체, 공공기관 등 공공발주 자는 전기공사업을 준수하여 분리발주를 지키고 있으나, 민간 영역에서는 아 직 분리발주 제도가 익숙하지 않고, 입찰과 발주 관련 전문성도 부족하여 분리 발주를 지키기 어려운 상황에 있다. 또한, 공공 영역에서도 기술제안 입찰과 민간투자사업 등이 분리발주 예외공사로 운영되고 있어 당초 분리발주 제도의 도입 취지에도 역행하고 있는 실정이다. 전세계적인 탄소중립 추진과 화석에 너지 저감 정책으로 친환경 에너지로 평가받고 있는 전기에너지의 수요는 폭 발적으로 증가할 것으로 예상되기 때문에 고품질의 전기설비를 생산할 수 있 도록 법과 제도의 정비가 반드시 요구된다. 이에 전기공사 분리발주 제도를 공 고히 하기 위해서는 분리발주 이행기반 구축, 인센티브 제공과 더불어 이를 위 반할 경우 처벌강화 등의 제도적 보완을 만들어 가야 할 것이다.
        9,600원
        19.
        2024.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Earthquakes of magnitude 3.0 or greater occur in Korea about 10 times on average yearly, and the number of earthquakes occurring in Korea is increasing. As many earthquakes have recently occurred, interest in the safety of nuclear power plants has increased. Nuclear power plants are equipped with many cabinet-type control facilities to regulate safety facilities, and function maintenance is required during an earthquake. The seismic performance of the cabinet is divided into structural and functional performances. Structural performance can be secured during the design procedure. Functional performance depends on the vibration performance of the component. Therefore, it is necessary to confirm the seismic performance of the components. Generally, seismic performance is confirmed through seismic simulation tests. When checking seismic performance through seismic simulation tests, it is difficult to determine the effect of frequency and maximum acceleration on an element. In this paper, shaking table tests were performed using various frequencies and various maximum accelerations. The seismic performance characteristics of the functions of electrical equipment components were confirmed through tests.
        4,000원
        20.
        2024.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : This study is conducted to evaluate the development of materials for extinguishing ESS(Energy Storage System) fires in electric vehicles using industrial byproducts. METHODS : Grout containing an appropriate amount of fly ash, silica fume, blast furnace slag powder, and ferronikel slag, which are industrial byproducts, was prepared. The fluidity, stress, and mechanical properties were evaluated in accordance with standard test methods. RESULTS : The fluidity of the materials used for the evolution of ESS fires differed depending on the material of the industrial byproducts. In the case of blast furnace slag, its fluidity is low owing to viscosity even when it content is high, and the use of ferronikelsrag is shown to be suitable for the evolution of ESS fires in fluidity and curing tests. CONCLUSIONS : Fire-extinguishing materials using industrial byproducts require a long curing time but exhibit the fluidity required for ESS fire extinguishment. In particular, the curing and fluidity of Peronikel slag and fly ash are suitable for ESS fire extinguishing.
        4,000원
        1 2 3 4 5