The potentiostatic titration method is one of the effective methods for determining the total uranium assay in high-concentration uranium samples. A notable approach is the Devies-Grey titration method, which was first reported in 1964. In the U sample treatment process of this method, the reduction of U(VI) by Fe(II) is initially a non-spontaneous reaction based on the reduction potentials of the two half-reactions. However, in a high-concentration phosphoric acid medium, the reduction potential of Fe(II) is enhanced, simultaneously increasing the reduction potential of U(VI). As a result, the redox reaction becomes spontaneous due to these dual effects. On the other hand, the reaction kinetics can elucidate why nitric acid does not oxidize U(IV) during the oxidation of Fe(II) to Fe(III). Furthermore, the role of Mo(VI)/Mo(V) as a redox enhancer, employed alongside nitric acid, can be comprehended through electrochemical means. Similarly, the function of V(IV) as an electrochemical enhancer, aiding the action of the Cr(VI) titrant, becomes understandable. Grasping the various phenomena that manifest during the titration process is imperative for refining existing titration methods and pioneering new ones.
Tin-antimony sulfide nanocomposites were prepared via hydrothermal synthesis and a N2 reduction process for use as a negative electrode in a sodium ion battery. The electrochemical energy storage performance of the battery was analyzed according to the tin-antimony composition. The optimized sulfides exhibited superior charge/discharge capacity (770 mAh g-1 at a current density of 100 mA g-1) and stable lifespan characteristics (71.2 % after 200 cycles at a current density of 500 mA g-1). It exhibited a reversible characteristic, continuously participating in the charge-discharge process. The improved electrochemical energy storage performance and cycle stability was attributed to the small particle size, by controlling the composition of the tin-antimony sulfide. By optimizing the tin-antimony ratio during the synthesis process, it did not deviate from the solubility limit. Graphene oxide also acts to suppress volume expansion during reversible electrochemical reaction. Based on these results, tin-antimony sulfide is considered a promising anode material for a sodium ion battery used as a medium-to-large energy storage source.
Transition metal oxide is widely used as a water electrolysis catalyst to substitute for a noble metal catalyst such as IrO2 and RuO2. In this study, the sol-gel method is used to synthesize the CuxCo3-xO4 catalyst for the oxygen evolution reaction (OER),. The CuxCo3-xO4 is synthesized at various calcination temperatures from 250 ℃ to 400 ℃ for 4 h. The CuxCo3- xO4 synthesized at 300 ℃ has a perfect spinel structure without residues of the precursor and secondary phases, such as CuO. The particle size of CuxCo3-xO4 increases with an increase in calcination temperature. Amongst all the samples studied, CuxCo3- xO4, which is synthesized at 300?, has the highest activity for the OER. Its onset potential for the OER is 370 mV and the overpotential at 10 mA/cm2 is 438 mV. The tafel slope of CuxCo3-xO4 synthesized at 300 ℃ has a low value of 58 mV/dec. These results are mainly explained by the increase in the available active surface area of the CuxCo3-xO4 catalyst.
Dual porous structures are observed for the first time on a metallic Cu surface underneath anodic Cu oxide by the application of an anodizing voltage to Cu in oxalic acid. The as-prepared porous Cu surface contains macropores of less than 1 μm diameter and mesopores of about tens of nanometers diameter with circular shapes. The size and density (number of pores/area) of the macropores are dependent on the applied voltage. It is likely that the localized dissolution (corrosion) of Cu in oxalic acid under the anodizing voltages is responsible for the formation of the mesopores, and the combination of a number of the mesopores might create the macropores, especially under a relatively high anodizing voltages or a prolonged anodizing time. The variations of pore structure (especailly macropores) with applied voltage and time are reasonably explained on the basis of the proposed mechanism of pore formation.
In this work, we studied the effects of electrochemical oxidation treatments of carbon fibers (CFs) on interfacial adhesion between CF and epoxy resin with various current densities. The surface morphologies and properties of the CFs before and after electrochemical-oxidation-treatment were characterized using field emission scanning electron microscopy, atomic force microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and single-fiber contact angle. The mechanical interfacial shear strength of the CFs/epoxy matrix composites was investigated by using a micro-bond method. From the results, electrochemical oxidation treatment introduced oxygen functional groups and increased roughness on the fiber surface. The mechanical interfacial adhesion strength also showed higher values than that of an untreated CF-reinforced composite.
The microstructures and cyclic voltammograms of Al-Si/C nano-composites were investigated as the anode of lithium ion batteries. Al-Si nanoparticles were prepared by the arc-discharge method. Al-Si/C nanoparticles were obtained by coated Al-Si nanoparticles with the precursor of glucose (C6H12O6) as carbon source. It was indicated that the post carbon coating treatment can reduce Al2O3 film on Al-Si particles, and new phase Al4C3 formed in the process can activate the inactivated materials of electrode in a certain extent.
Single crystalline Cu nanowires with controlled diameters and aspect ratios have been synthesized using electrochemical deposition within confined nanochannels of a porous anodic aluminium oxide(AAO) template. The diameters of nano-sized cylindrical pores in AAO template were adjusted by controlling the anodization conditions. Cu nanowires with diameters of approximately 38, 99, 274 nm were synthesized by the electrodeposition using the AAO templates. The crystal structure, morphology and microstructure of the Cu nanowires were systematically investigated using XRD, FE-SEM, TEM and SAED. Investigation results revealed that the Cu nanowires had the controlled diameter, high aspect ratio and single crystalline nature.
We investigated the electrochemical properties for Langmuir-Blodgett (LB) films of functionalized polyimide. LB films of polyimide monolayer were deposited by the Langmuir-Blodgett method on the indium tin oxide(ITO) glass. The electrochemical properties measured by cyclic voltammetry with a three-electrode system(an Ag/AgCl reference electrode, a platinum wire counter electrode and LB film-coated ITO working electrode) at various concentrations(0.5, 1.0, and 1.5 N) of NaClO4 solution. The current of reduction and oxidation range was measured from 1650 mV to -1350 mV, continuously. The scan rates were 50, 100 and 150 mV/s, respectively. As a result, monolayer and multilayer LB films of polyimide are appeared on irreversible process caused by the oxidation current from the cyclic voltammogram.
The morphology of three-dimensional (3D) cross-linked electrodeposits of copper and tin was investigated as a function of the content of metal sulfate and acetic acid in a deposition bath. The composition of copper sulfate had little effect on the overall copper network structure, whereas that of tin sulfate produced significant differences in the tin network structure. The effect of the metal sulfate content on the copper and tin network is discussed in terms of whether or not hydrogen evolution occurs on electrodeposits. In addition, the hydrophobic additive, i.e., acetic acid, which suppresses the coalescence of evolved hydrogen bubbles and thereby makes the pore size controllable, proved to be detrimental to the formation of a well-defined network structure. This led to a non-uniform or discontinuous copper network. This implies that acetic acid critically retards the electrodeposition of copper.
Ba(NO3)2와 TiCl4의 혼합 수용액으로부터 전기화학법 중 음극혼원법(cathodic reduction method)을 이용하여 stainless steel기판 위에 BaTiO3박막을 제조하였다. BaTiO3전구체 박막은 혼합 수용액으로부터 반응초기에 TiO2·nH2OM/형태로 우선적으로 형성되었으며, 일정 시간이 경과한 후에는 일정한 Ba/Ti몰비를 갖는 박막이 제조되었다. BaTiO3박막 내 Ba/Ti조성비는 혼합 수용액 내에 존재하는 이온 조성비 Ba2+/Ti4+에 변화하였는데, 0.3M Ba(NO3)2와 0.1M TiCI4의 혼합 수용액과 10mA/cm2의 전류를 흘려주는 조건에서 Ba/Ti의 조성비가 1에 가까운 박막을 얻을 수 있었다. 이러한 전구체 박막을 500˚C이상에서 열처리한 결고 페로브스카이트 상의 BaTiO3박막이 제조되었다.
전기화학법 중 음극환원법을 이용하여 0.005M TiCI4수용액으로부터 수화물 형태의 TiO2박막을 제조하였다. TiCI4수용액에 첨가제로 에탄올을 50vol% 첨가하여 균일한 박막을 얻을 수가 있었으며, 전류밀도와 시간에 따라서 박막의 두께와 미세구조가 변화하였다. 성장속도가 큰 조건에서 얻은 박막은 균질성의 감소로 인하여 건조과정이나 열처리 중 다량의 균열이 발생하였다. 일정한 전류밀도ㅇ에서 반응시간의 증가에 따라 박막의 두께가 직선적으로 증가하였으며, 10mA/cm2의 전류밀도에서 3분 동안 반응시켜 약 0.7μm 두께의 우수한 TiO2박막을 얻을수 있었다. 이러한 박막은 800˚C에서 한 시간 열처리 한 결과, rutile 단일상으로 결정화되었다.
NaCl과 LiNO2의 첨가량에 따른 콘크리트에 매립된 철근의 부식거동을 전기화학적 임피던스 분광법을 이용하여 고찰하였다. 부식 가속 방법중 하나인 건습반복법을 이용하여 단기간 내에 부식현상을 촉진하였으며, 측정된 임피던스 값을 통해 등가회로를 제안할 수 있었다. NaCl 1.2 kg/m3이 첨가된 콘크리트에 매립된 철근의 부동태 피막이 빠르게 파괴되는 것을 확인할 수 있었으며, 염화물 첨가량 대비 0.6M의 LiNO2를 첨가한 경우 부식진행속도가 크게 저하하는 것을 확인할 수 있었다. 또한 염화물 첨가량 대비 1.2M의 LiNO2를 첨가한 경우 부동태 피 막이 부식가속시간이 지나도 파괴되지 않고 성능이 유지되는 것을 확인할 수 있었다.
In this study, corrosion potential (Ecorr), corrosion rate, and polarization resistance were measured aimed at inorganic inhibitors (passive film type) and organic inhibitors (absorption type). The experiment was conducted using potentiostat for the variable molar ratio and chloride ion concentration of the components of inhibitors in an aqueous solution of saturated calcium hydroxide targeting corrosion. As a result, it was possible to ensure an anticorrosive performance of at least a 1.2 molar ratio of inorganic inhibitors. Also, the organic inhibitors ensured the prevention of the anticorrosive performance of at least about a 0.3 molar ratio. It also showed the tendency that between polarization resistance and corrosion rate, Ecorr and corrosion rate is inversely proportional to the linear. Conversely, the tendency between polarization resistance and Ecorr is proportional to the linear. Also, a distinct difference in organic and inorganic inhibitors’ relationship to Ecorr, corrosion rate, and polarization resistance was not shown.
콘크리트는 물시멘트비에 상응하는 공극을 가지게 되며, 공극을 통한 염소이온의 확산을 평가하기 위하여 해안가 폭로 및 해수 침지실험이 널리 사용된다. 이상의 실험은 경우에 따라서 다년간의 시간을 요하는 경우도 있어, 최근에는 전기 영동법에 기초한 급속 염소이온 확산시험을 실시하는 경우가 많으나, 그 값이 폭로 및 침지 시험에서 얻은 값과 상이한 경우가 많아 데이터의 실용성을 높이기 위하여 그 원인 규명이 절실한 실정이다. 본 연구에서는 평가 방법으로써 Nernst-Einstein의 식을 통한 염화물 이온 이동계수의 산정방법을 사용하였으며, NT BUILD 492법 및 해수 침지실험을 통한 확산 특성과 비교하여 값의 차이에 대하여 고찰하였다. 그 결과 실험인자의 변화가 염소이온 확산에 미치는 영향은 미비한 것으로 평가되어져 실험조건에서 발생하는 영향은 거의 없는 것으로 규명되었으며, NT BUILD 492법과도 거의 동일한 값이 구해졌다. 침지실험 결과와의 상이는 염소이온 확산에서 경계조건의 차이 및 염소이온의 시멘트 수화물과의 고정화에 의한 것으로 판단되어진다.
This study was carried out to investigate the effect of electrochemical (EC) disinfection of artificial wastewater contaminated by Escherichia coli culture. Circulated batch type electrochemical disinfection system using three plates electrodes was used. Also, the several factors (pH, ORP, DO, temperature, current, conductivity) were measured in order to investigate the fundamental design factor in the EC disinfection system. It was demonstrated that the EC process was highly effective for wastewater disinfection. At the constant voltage, the disinfection efficiency was increased according to time. The disinfection efficiency and current increased as the increase of voltage. The variation of conductivity was a little related to the variation of CFU (colony forming units). The differences in disinfection efficiency according to the ice pack and the variation of electrodes were not occurred. The EC disinfection efficiency and current increased according to the increase of circulating flow rate.