검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 89

        41.
        2015.09 구독 인증기관 무료, 개인회원 유료
        Biofilms of oral microbes can cause various diseases in the oral cavity, such as dental caries, periodontitis and mucosal disease. Electrolyzed water generated by an electric current passed via water using a metal electrode has an antimicrobial effect on pathogenic bacteria which cause food poisoning. This study investigated the antimicrobial activity of electrolyzed waters using various metal electrodes on the floatage and biofilms of oral microbes. The electrolyzed water was generated by passing electric current using copper, silver and platinum electrodes. The electrolyzed water has a neutral pH. Streptococcus mutans, Porphyromonas gingivalis and Tannerella forsythia were cultured, and were used to form a biofilm using specific media. The floatage and biofilm of the microbes were then treated with the electrolyzed water. The electrolyzed water using platinum electrode (EWP) exhibited strong antimicrobial activity against the floatage and biofilm of the oral microbes. However, the electrolyzed water using copper and silver electrodes had no effect. The EWP disrupted the biofilm of oral microbes, except the S. mutans biofilm. Comparing the different electrolyzed waters that we created the platinum electrode generated water may be an ideal candidate for prevention of dental caries and periodontitis.
        4,000원
        42.
        2015.05 구독 인증기관·개인회원 무료
        Capacitive deionization (CDI) is one of the attractive environmentally-friendly technologies for desalting applications. It consumes relatively small energy for operation and does not produce any secondary wastes for a re-use. In this work, we have successfully prepared both anion and cation exchange ionomer coating solutions using engineering polymers as the base materials. The functionalized ionomers were coated on porous carbon electrodes and also utilized as a binder for immobilizing the carbon particles to improve the current and removal efficiencies of CDI process. The ionomers exhibited excellent electrochemical properties of both the low electrical resistance and high ion selectivity. As a result, the desalination performances of the CDI were largely improved by employing the ionomers-carbon composite electrodes.(No. 10047796)
        43.
        2014.12 구독 인증기관 무료, 개인회원 유료
        유기태양전지의 투명전극으로서 기존의 값비싸고 깨지기 쉬운 Indium Tin Oxide (ITO) 전극을 대체하고자, 전도성 고분자인 poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)를 적용하였다. 솔벤트의 도핑 농도에 따른 PEDOT:PSS 박막의 전기 전도도와 표면 거칠기의 특성 변화를 관찰하고, 그 결과가 PEDOT:PSS를 투명전극으로 사용한 유기태양전지의 특성에 미치는 영향을 연구하였다. PEDOT:PSS의 솔벤트 농도가 증가함에 따라, 박막의 표면 거칠기가 증가하고, 이는 유기태양전지의 단락전류의 변화를 야기했다. 또한, 소자의 홀 이동층이 얇아짐에 따라 광활성층의 단파장영역의 광흡수가 증가하는 것을 관찰할 수 있었다.
        4,000원
        44.
        2014.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Light scattering enhancement is widely used to enhance the optical absorption efficiency of dye-sensitized solar cells. In this work, we systematically analyzed the effects of spherical voids distributed as light-scattering centers in photoanode films made of an assembly of zinc oxide nanoparticles. Spherical voids in electrode films were formed using a sacrificial template of polystyrene (PS) spheres. The diameter and volume concentration of these spheres was varied to optimize the efficiency of dye-sensitized solar cells. The effects of film thickness on this efficiency was also examined. Electrochemical impedance spectroscopy was performed to study electron transport in the electrodes. The highest power conversion efficiency of 4.07 % was observed with 12μm film thickness. This relatively low optimum thickness of the electrode film is due to the enhanced light absorption caused by the light scattering centers of voids distributed in the film.
        4,000원
        45.
        2014.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Recently, improvement in the conversion efficiency of silicon-based solar cells has been achieved by decreasing emitter doping concentration, because the lightly doped emitter can effectively prevent the recombination of electrons and holes generated by solar light irradiation. This type of emitter is very thin due to the low doping concentration, thus conductive materials (i.e., silver) used for front electrodes can easily penetrate the emitter during a firing process because of their large diffusivity in silicon. This results in junction leakage currents which might reduce cell efficiencies. In this study, Al2O3-coated Ag powders were synthesized by an ultrasonic spray pyrolysis method and applied to the conductive materials of the front electrode to control the junction leakage current. The Al2O3 shell obstructs the Ag diffusion into the emitter during the firing process. The powder is spherical with a core-shell structure and the thickness of the Al2O3 shell is tens of nanometers. Solar cells were fabricated using pure Ag powders or the Al2O3-coated Ag powder as front electrode materials, and the conversion efficiency and junction leakage current were compared to investigate the role of the Al2O3 shell during the firing processes.
        4,000원
        46.
        2014.07 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Pitch is an attractive raw material for carbon fiberprecursors due to its low cost stemming from its availability as a residue of coking and petroleum processes. Ford Motor Company reported a carbon fibertarget price of 11.0/kg by using a fast cycle-time manufacturing method with carbon fiberin an inexpensive format, allowing for an average retail price of gasoline of 3.58/gallon. They also recommended the use of carbon fiberwith strength of 1700 MPa, modulus of 170 GPa, and 1.5% elongation. This study introduced a ca. 5.5 μm carbon fiberwith 2000 MPa tensile strength obtained from a precursor through simple distil-lation of petroleum residue. Petroleum pitch based carbon nanofibersprepared via electros-pinning were characterized and potential applications were introduced on the basis of their large specific surface area and relatively high electrical conductivity.
        4,000원
        47.
        2014.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Due to their morphology, electrochemical stability, and function as a conducting carbon matrix, graphene nanosheets (GNS) have been studied for their potential roles in improving the performance of sulfur cathodes. In this study, a GNS/sulfur (GNS/S) composite was prepared using the infiltration method with organic solvent. The structure, morphology and crystallinity of the composites were examined using scanning electron microscopy, transmission electron microscopy, and X-ray diffraction. The electrochemical properties were also characterized using cyclic voltammetry (CV). The CV data revealed that the GNS/S composites exhibited enhanced specific-current density and ~10% higher capacity, in comparison with the S-containing, activated-carbon samples. The composite electrode also showed better cycling performance for multiple charge/discharge cycles. The improvement in the capacity and cycling stability of the GNS/S composite electrode is probably related to the fact that the graphene in the composite improves conductivity and that the graphene is well dispersed in the composites.
        3,000원
        48.
        2013.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Activated carbon (AC) was synthesized from rice husks using the chemical activation method with KOH, NaOH, a combination of (NaOH + Na2CO3), and a combination of (KOH + K2CO3) as the chemical activating reagents. The activated carbon with the highest surface area (around 2000m2/g) and high porosity, which allows the absorption of a large number of ions, was applied as electrode material in electric double layer capacitors (EDLCs). The AC for EDLC electrodes is required to have a high surface area and an optimal pore size distribution; these are important to attain high specific capacitance of the EDLC electrodes. The electrodes were fabricated by compounding the rice husk activated carbons with super-P and mixed with polyvinylidene difluoride (PVDF) at a weight ratio of 83:10:7. AC electrodes and nickel foams were assembled with potassium hydroxide (KOH) solution as the electrolyte. Electrochemical measurements were carried out with a three electrode cell using 6 M KOH as electrolyte and Hg/HgO as the reference electrode. The specific capacitance strongly depends on the pore structure; the highest specific capacitance was 179 F/g, obtained for the AC with the highest specific surface area. Additionally, different activation times, levels of heating, and chemical reagents were used to compare and determine the optimal parameters for obtaining high surface area of the activated carbon.
        4,000원
        49.
        2013.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Photoelectrochemical cells have been used in photolysis of water to generate hydrogen as a clean energy source. A high efficiency electrode for photoelectrochemical cell systems was realized using a ZnO hierarchical nanostructure. A ZnO nanofiber mat structure was fabricated by electrospinning of Zn solution on the substrate, followed by oxidation; on this substrate, hydrothermal synthesis of ZnO nanorods on the ZnO nanofibers was carried out to form a ZnO hierarchical structure. The thickness of the nanofiber mat and the thermal annealing temperature were determined as the parameters for optimization. The morphology of the structures was examined by field-emission scanning electron microscopy, transmission electron microscopy, and X-ray diffraction. The performance of the ZnO nanofiber mat and the potential of the ZnO hierarchical structures as photoelectrochemical cell electrodes were evaluated by measurement of the photoelectron conversion efficiencies under UV light. The highest photoconversion efficiency observed was 63 % with a ZnO hierarchical structure annealed at 400˚C in air. The morphology and the crystalline quality of the electrode materials greatly influenced the electrode performance. Therefore, the combination of the two fabrication methods, electrospinning and hydrothermal synthesis, was successfully applied to fabricate a high performance photoelectrochemical cell electrode.
        4,000원
        50.
        2013.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, an electro-catalyst of Pt nanoparticles supported by polypyrrole-functionalized graphene (Pt/PPy-reduced graphene oxide [RGO]) is reported. The Pt nanoparticles are deposited on the PPy-RGO composite by chemical reduction of H2PtCl6 using NaBH4. The presence of graphene (RGO) caused higher activity. This might have been due to increased electro-chemically accessible surface areas, increased electronic conductivity, and easier charge-transfer at polymer-electrolyte interfaces, allowing higher dispersion and utilization of the deposited Pt nano-particles. Microstructure, morphology and crystallinity of the synthesized materials were investigated using X-ray diffraction and transmission electron microscopy. The results showed successful deposition of Pt nano-particles, with crystallite size of about 2.7 nm, on the PPy-RGO support film. Catalytic activity for methanol electro-oxidation in fuel cells was investigated using cyclic voltammetry. The fundamental electrochemical test results indicated that the electro-catalytic activity, for methanol oxidation, of the Pt/PPy-RGO combination was much better than for commercial catalyst.
        3,000원
        51.
        2013.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Coconut shell 계 상용 활성탄을 후처리하여 EDLC 전극재로 적용하였다. Coconut shell계 활성탄을 별도의 처리없이 EDLC 전극재로 사용하였을 때, 초기 무게용량 및 부피용량은 66 F/g 및 39 F/cc이었고, 100 사이클 충 방전을 반복한 후, 각각 54 F/g 및 32 F/cc로 감소하여 82%의 충 방전효율을 나타내었다. 충 방전 반복에 따른 용량의 감소폭이 크며, CV 특성에서 부반응에 의한 분극현상이 발생하여 전극재로 적합하지 않았다. 상업용 활성탄에 포함된 불순물을 효율적으로 제거하기 위하여 알칼리 및 산 처리를 하였고, 그 후 세공 분포와 표면의 산성 관능기 함량을 제어하기 위하여 질소 분위기에서 열처리하였다. 알칼리 및 질산처리 한 후 800℃에서 열처리한 전극재의 경우, 초기부피용량 44 F/cc, 100사이클 후 42 F/cc로서 실용화 가능한 수준의 높은 부피용량 및 95% 이상의 높은 충 방전 효율을 나타내었다.
        4,000원
        52.
        2013.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Carbazole, EDOT 와 benzobisthiazole이 포함되어진 새로운 전도성 고분자의 합성 및 특징을 유기 분광학적인 방법으로 규명하였다. 포텐티오메트릭 이온 선택성 막 전극들은 넒은 감응범위(104~107)와, 시료의 혼탁도에 영향을 주지 않으며, 빠른 감응 시간과 소형화가 쉬운 이유로 병원, 환경과 산업 현장에서 널리 이용되고 있다. 이 전극의 막에는 강한 흡착과 열적인 안정성에서 뛰어난 상온에서 경화시킨 (RTV)-타입 실리콘 고무가 사용되었다. 불행하게도, 이 실리콘 고무 기반의 전극의 높은 막 저항(PVC 기반의 것과 비교하여 102~103배 더 높은 수치)이 응용에 제한이 되어 왔다. 여기에서 우리는 실리콘 고무 막에 전도성 고분자를 첨가 하여 막 저항이 줄어든 새로운 고체 전극을 구현하였다.
        4,000원
        53.
        2012.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Metal nanowires can be coated on various substrates to create transparent conducting films that can potentially replace the dominant transparent conductor, indium tin oxide, in displays, solar cells, organic light-emitting diodes, and electrochromic windows. One issue with these metal nanowire based transparent conductive films is that the resistance between the nanowires is still high because of their low aspect ratio. Here, we demonstrate high-performance transparent conductive films with silver nanofiber networks synthesized by a low-cost and scalable electrospinning process followed by two-step sequential thermal treatments. First, the PVP/AgNO3 precursor nanofibers, which have an average diameter of 208 nm and are several thousands of micrometers in length, were synthesized by the electrospinning process. The thermal behavior and the phase and morphology evolution in the thermal treatment processes were systematically investigated to determine the thermal treatment atmosphere and temperature. PVP/AgNO3 nanofibers were transformed stepwise into PVP/Ag and Ag nanofibers by two-step sequential thermal treatments (i.e., 150˚C in H2 for 0.5 h and 300˚C in Ar for 3 h); however, the fibrous shape was perfectly maintained. The silver nanofibers have ultrahigh aspect ratios of up to 10000 and a small average diameter of 142 nm; they also have fused crossing points with ultra-low junction resistances, which result in high transmittance at low sheet resistance.
        4,000원
        54.
        2012.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Bio assay of mercury and cadmium ions were searched using voltammetric analysis using DNA doped carbon nanotube paste electrodes (DCP). The square-wave stripping voltammetryic optimized results indicated working ranges of 1-10.0 ngL-1 and 20-100 ugL-1, Hg(II) Cd(II) within an accumulation time of 120 seconds, in 0.1-M phosphate buffer solutions of pH 6.3. The relative standard deviations of 5 ngL-1 Hg(II) and Cd(II) that observed were 0.14 and 0.22% (n=12), respectively, using optimum conditions. The low detection limit (S/N) was pegged at 0.1 ngL-1 (4.9×10-11M) Hg(II) and 0.2 ngL-1 (1.77×10-10M) Cd(II). The developed methods can be applied to assays in biological fish kidneys and water samples.
        4,000원
        55.
        2012.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The near explosion of attention given to graphene has attracted many to its research field. As new studies and findings about graphene synthesis, properties, electronic quality control, and possible applications simultaneous burgeon in the scientific community, it is quite hard to grasp the breadth of graphene history. At this stage, graphene's many fascinating qualities have been amply reported and its potential for various electronic applications are increasing, pulling in ever more newcomers to the field of graphene. Thus it has become important as a community to have an equal understanding of how this material was discovered, why it is stirring up the scientific community and what sort of progress has been made and for what purposes. Since the first discovery, the hype has expediently led to near accomplishment of industrial-sized production of graphene. This review covers the progress and development of synthesis and transfer techniques with an emphasis on the most recent technique of chemical vapor deposition, and explores the potential applications of graphene that are made possible with the improved synthesis and transfer.
        4,900원
        56.
        2012.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Insoluble catalytic electrodes were fabricated by RF magnetron sputtering of Pt on Ti substrates and the performance of seawater electrolysis was compared in these electrodes to that is DSA electrodes. The Pt-sputtered insoluble catalytic electrodes were nearly 150 nm-thick with a roughness of 0.18μm, which is 1/660 and 1/12 of these values for the DSA (dimensionally stable anodes) electrodes. The seawater electrolysis performance levels were determined through measurements of the NaOCl concentration, which was the main reaction product after electrolysis using artificial seawater. The NaOCl concentration after 2 h of electrolysis with artificial seawater, which has 3.5% NaCl normally, at current densities of 50, 80 and 140 mA/cm2 were 0.76%, 1.06%, and 2.03%, respectively. A higher current density applied through the electrodes led to higher electrolysis efficiency. The efficiency reached nearly 58% in the Pt-sputtered samples after 2 h of electrolysis. The reaction efficiency of DSA showed higher values than that of the Pt-sputtered insoluble catalytic electrodes. One plausible reason for this is the higher specific surface area of the DSA electrodes; the surface cracks of the DSAs resulted in a higher specific surface area and higher reaction sites. Upon the electrolysis process, some Mg- and Ca-hydroxides, which were minor components in the artificial seawater, were deposited onto the surface of the electrodes, resulting in an increase in the electrical resistances of the electrodes. However, the extent of the increase ranged from 4% to 7% within an electrolysis time of 720 h.
        4,000원
        57.
        2011.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Carbon-based electric double-layer capacitors are being evaluated as potential energy-storage devices in an expanding number of applications. In this study, samples of carbon black (CB) treated at different temperatures ranging from 650℃ to 1100℃ were used as electrodes to improve the efficiency of a capacitor. The surface properties of the heat-treated CB samples were characterized by X-ray photoelectron spectroscopy and X-ray diffraction. The effect of the heat-treatment temperature on the electrochemical behaviors was investigated by cyclic voltammetry and in galvanostatic charge-discharge experiments. The experimental results showed that the crystallinity of the CBs increased as the heat-treatment temperature increased. In addition, the specific capacitance of the CBs was found to increase with the increase in the heat-treatment temperature. The maximum specific capacitance was 165 F·g-1 for the CB sample treated at 1000℃.
        3,000원
        58.
        2011.07 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We report on the effects of TiO2 doping power on the characteristics of multicomponent TiO2-ITO (TITO) electrodes prepared by a multi-target sputtering system with tilted cathode guns. Both as-deposited and annealed TITO electrodes showed linearly increased sheet resistance and resistivity with increasing TiO2 doping power. However, the TITO electrodes exhibited a fairly high optical transmittance regardless of the TiO2 doping power due to the high transparency of the TiO2. Although the annealed TITO showed much lower sheet resistance and resistivity relative to the as-deposited samples, the electrical properties of the annealed samples exhibited similar dependence on the TiO2 power to the as-deposited samples. In addition, it was found that doping of an anatase TiO2 in the ITO electrode prevented the preferred (222) orientation of the TITO electrodes. Although the TITO electrode showed higher sheet resistance and resistivity than that of the pure ITO electrode, it offers a very smooth surface and usage of a low-cost Ti element. It is thus considered a promising multicomponent transparent conducting electrode for cost-efficient flat panel displays and photovoltatics.
        4,000원
        59.
        2011.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Gold have been used as an electrode materials having a good mechanical flexibility as well as electrical conductivity, however the stretchability of the gold on a flexible substrate is poor because of its small elastic modulus. To overcome this mechanical inferiority, the reinforcing gold is necessary for the stretchable electronics. Among the reinforcing materials having a large elastic modulus, carbon nanotube (CNT) is the best candidate due to its good electrical conductivity and nanoscale diameter. Therefore, similarly to ferroconcrete technology, here we demonstrated gold electrodes mechanically reinforced by inserting fabrics of CNTs into their bodies. Flexibility and stretchability of the electrodes were determined for various densities of CNT fabrics. The roles of CNTs in resisting electrical disconnection of gold electrodes from the mechanical stress were confirmed using field emission scanning electron microscope and optical microscope. The best mechanical stability was achieved at a density of CNT fabrics manufactured by 1.5 ml spraying. The concept of the mechanical reinforced metal electrode by CNT is the first trial for the high stretchable conductive materials, and can be applied as electrodes materials in various flexible and stretchable electronic devices such as transistor, diode, sensor and solar cell and so on.
        4,000원
        60.
        2010.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 논문은 메탈 이중층 전극을 이용한 유기 박막 트랜지스터를 제작하여 Au나 Ag 금속만으로 제작한 일반적인 유기 박막 트랜지스터와의 전기적 특성을 비교하였다. 전기적 특성에서 게이트 절연층은 높은 K 값을 갖는 Al2O3를 사용하였고, 유기 반도체층은 펜타센을 사용하였다. 본 실험에서 제작한 유기 박막 트랜지스터는 1.6 × 10-1 cm2의 포화영역 이동도를 얻을 수 있었으며, 또한 드레인 전압을 -5V로 하고, 게이트 전압을 3 V에서 -10 V 까지 인가하였을 때 3×105의 전멸 비를 얻을 수 있었다.
        4,000원
        1 2 3 4 5