This study investigated the distribution and growth performance of Bolboschoenus planiculmis under varying estuarine environmental conditions. We aimed to determine the optimal planting methods and environmental conditions with respect to salinity, soil texture, and tidal regimes on its growth performance. Our findings revealed a significant reduction in B. planiculmis coverage, shrinking to 955,393 m2 in 2024, representing only 38.59% of that compared to 2004. The plant’s survival rate exhibited a clear salinity gradient: 0 ppt (89±8.01%)>5 ppt (64±4.56%)>15 ppt (37±4.25%)>30 ppt (0±0.00%). Planting density significantly influenced growth, with 24 tubers m-2 yielding the highest number of plants per tuber (14.67±0.33). A planting depth of 5 cm proved optimal for tuber germination and growth. Soil texture analysis demonstrated that a lower sand content promoted growth, with the highest density observed in soil containing 10% sand (435±6.96 plants m-2). Tidal influence also played an important role, with areas experiencing regular tidal fluctuations fostering the most successful growth. Planting tubers or young plants with attached tubers in these tidal zones led to the highest survival rates and biomass.
Fishways, particularly installed at the estuary, have a purpose to encourage fluent migration for migratory fishes, as well as amphidromous and even freshwater species. Not choosing the laborious traditional method of using traps, we assessed the efficiency of the two fishways installed at the west and east barrage of the Nakdong River estuarine barrage respectively, by analyzing the videos recorded through automatic monitoring system. We randomly selected 30 videos monthly at each fishways and identified what kind of fishes were using the fishways and categorised their behaviour such as size, time and whether they passed the monitoring system or not. As a result, a total 8 families 14 species were recorded by monitoring system, with the most dominance of Erythroculter erythropterus (Relative Abundance: 59.5%), followed by Micropterus salmoides (R.A: 19.9%) and Mugil cephalus (R.A: 9.9%). The monitoring system can capture passing fishes during night but the number of appearances of fish species at each hour of a day indicated significant diurnal activities (p<0.05). When fishes pass the monitoring system, approximately 70% of them passed through the monitoring device, while 17% of them showed fallback movement. Our finding indicates that species-specific characteristics of each fish are well represented through video monitoring method. In order to maximise advantages of using video monitoring, it is necessary to consider the installation point properly so that the monitoring system does not interfere with the movement of fish. Also, the utilisation of AI technology in the future is also necessary.
This study investigated the annual change and distribution of flora, including endangered species, Korean Red List species, and invasive plants, in the Nakdong River Estuary Ecological Park over a 10-year period (2013~2023). The park was established in 2009 as part of the Four Major Rivers Restoration Project. The investigation identified a total of 704 taxa, comprising 137 families, 401 genera, 631 species, 18 subspecies, 38 varieties, 11 forms, and 6 hybrids. Eulsukdo Ecological Park exhibited the highest plant diversity with 531 taxa, followed by Hwamyeong (404 taxa), Samnak (387 taxa), Daejeo (369 taxa), and Maekdo (356 taxa). The endangered wildlife survey identified three endangered plant species (Class II): Euryale ferox, Brasenia schreberi, and Saururus chinensis. Following the endangered species restoration project, E. ferox has been consistently observed both within the restoration area and the riparian of main channel. The Urbanization Index (UI) was highest in Eulsukdo Ecological Park (24.1%), followed by Hwamyeong (20.0%), Samnak (18.1%), Maekdo (17.8%), and Daejeo Ecological Parks (16.7%). Twelve invasive plants were identified: Sicyos angulatus, Lactuca scariola, Ambrosia trifida, Ambrosia artemisiifolia, Solanum carolinense, Aster pilosus, Hypochaeris radicata, Rumex acetosella, S. altissima, Paspalum disticum, Paspalum distichum var. indutum, and Humulus japonicus. Notably, S. altissima showed a significant decrease in its total distribution area, shrinking from 741,092 m2 in 2021 to 241,396 m2 in 2024. Continuous monitoring and management are necessary to prevent invasive plants, including ecosystem-disturbing species, from forming large colonies and hindering the growth of native plants.
This study investigated the spatial distribution of dissolved organic carbon and the changes in tidal flat soil characteristics following the flooding season in the closed estuary of the Geumgang River basin. We found that after the flooding season, a brackish water area expanded due to increased river discharge, which also introduced low concentrations of dissolved organic carbon from the river. Dissolved inorganic carbon predominantly originated from the sea in proportion to salinity, indicating that in the closed estuary area, dissolved carbon supplied from the sea remained a significant source even after the flooding season. Additionally, a substantial amount of tidally transported silt and clay was deposited near the estuary dam after the flood, and its effects continued to influence the sediment characteristics downstream in the intertidal zone. As an empirical study in the closed estuary, our results are expected to contribute to conservation measures for the World Heritage Site in the area.
This study reassessed two KBA sites in the Republic of Korea following the KBA guidelines. Both sites met the sub-criteria A1a, A1b, and D1a, confirming their status as KBA. These assessments provide a scientific foundation for discussions on designating new protected areas or expanding existing ones. Through this study, we confirmed that continuous biodiversity conservation is essential for Geum-gang river and estuary and Yubu-do to maintain their KBA status. This KBA reassessment provides an important scientific foundation for discussions on the designation of new protected areas or the expansion of existing ones. Furthermore, this study was based on a previously evaluated taxonomic group, birds, highlighting the need for future assessments to include other biological taxa and evaluation criteria, such as Criteria B or E, for a more comprehensive analysis.
강으로부터 해양으로 유입되는 퇴적물은 유역분지의 지질, 지리, 지형, 기후 등의 영향을 반영하며, 육상 유역분 지에서 퇴적물 생성 과정에서 수반되는 화학적 풍화는 대기 중 이산화탄소 농도를 조절하는 데에 중요한 역할을 하는 것으로 알려져 있다. 본 연구에서는 한반도 남해안 낙동강 하구 인근 해저 표층 퇴적물의 지화학 조성을 이용하여 화 학적 풍화의 강도와 퇴적물의 기원지에 분포하는 암석의 조성을 추정하였다. 연구 시료의 화학적 풍화 강도는 중간에 낮은 정도(평균 Chemical Index of Alteration=68)이며 A-CN-K 도표에서 추정한 풍화의 추세는 퇴적물의 기원지 성분 이 평균적인 상부 대륙지각과 매우 유사한 것으로 보인다. 이는 낙동강 유역분지에 분포하는 중생대 화강암류와 경상누 층군 퇴적암이 혼합된 성분을 반영하는 것으로 판단되기 때문에 연구 대상인 퇴적물이 낙동강 하구로부터 유입되는 퇴 적물의 성분을 대표하는 것으로 해석한다. 표층 퇴적물의 희토류원소는 분화된 경희토류-중희토류의 비와 음의 Eu 이상 을 나타내어 상부 대륙지각과 매우 유사하다. 본 연구의 결과를 전 세계 강 하구 퇴적물 자료 및 국내의 큰 강 자료와 비교하였으며, 이를 통하여 지질 및 지형의 잠재적인 영향을 고려할 수 있다.
Daemadeung, located in the estuary of the Nakdong River, is formed by sand dunes and possesses well-developed intertidal flats. This study aimed to investigate the habitat of benthic microalgae, photosynthetic pigments, and photosynthetic efficiency in the intertidal flats of Daemadeung from January to December 2011. The inorganic nitrogen content in the sediment pore water was primarily composed of ammonium, while nitrate+nitrite was dominant in the upper layer water. The concentration of chlorophyll a and fucoxanthin in the sediment surface was significantly higher than the mean of all the sediment layer. The average Fv/Fm of benthic microalgae during the entire survey period was 0.52±0.03, with the highest value (0.61±0.08) observed in February. The rETRmax showed a seasonal trend, being high from spring to early autumn (April to October) and low from winter to early spring (January to March, November, December), with the highest value (153.05±2.30 μmol electrons m-2 s-1) in July and the lowest (38.49±5.17 μmol electrons m-2 s-1) in January. The average Fv/Fm of diurnal microalgae was 0.48±0.03, with the highest value (0.61±0.08) observed at noon. The rETRmax showed a highest peak at noon (54.24±11.35 μmol electrons m-2 s-1) and reached its lowest point at 16:00 (26.17±4.75 μmol electrons m-2 s-1). These findings suggest that the productivity of benthic microalgae varies significantly depending on the survey time and sediment depth. Therefore, to quantify the productivity of benthic microalgae using Diving-PAM, surveys should be conducted based on tidal conditions, and simultaneous pigment analysis of sediment layers should also be performed.
This study was conducted to provide the basic information on environment effects on appearance of ichthyoplankton in the Yeongsan River Estuary in Spring and Summer from 2018 to 2020. Data were obtain from the database of ‘Coastal Ecosystem’ in “National Survey of Marine Ecosystem.” Among the abundance ichthyoplankton species, the Gobiidae spp. dominated, accounting for 85% of the total abundances with the secondary dominant species being the Parablennius yatabei, representing 3% of the abundances. Cluster analysis results revealed a composition differentiated between spring and summer. The Yeongsan River Estuary is known to be significantly influenced by the opening and closing of estuarine gates. In this study, the fluctuation in the number of occurrence groups and abundance among the years and season is attributed to the phenomenon of high water temperature period and the freshwater discharge.
River estuaries are dynamic and productive ecosystems with high regional biodiversity. Environmental DNA (eDNA) has become a useful approach to assessing biodiversity in aquatic ecosystems. This study was conducted to investigate fish community characteristics and species diversity in two river estuary ecosystems, the Taehwa River and Changwon Stream. We further compared conventional and eDNA metabarcoding analyses of the fish communities. The conventional survey was performed in May, July, and October 2022, while the eDNA analysis was conducted only in May. We observed various fish species with different life histories, including carp, goby, and marine fish. We also found that migratory fish, such as dace Tribolodon hakonensis, sweetfish Plecoglossus altivelis, and eel Auguilla japonica, occurred in the Taehwa River, suggesting high river connectivity. Marine fish species were predominant in the Changwon Stream, as this river is located close to the sea. The diversity indices showed that the Taehwa River generally had higher species richness, evenness, and diversity values than the Changwon Stream. A total of 9-19 species were detected in the conventional survey for the three sites, whereas 11-18 species were found from eDNA analysis. The findings indicate that the sensitivity of eDNA was similar to or higher than that of the conventional method. Our study findings suggest the efficiency and efficacy of eDNA-based fish community monitoring, although with some shortcomings in applying the genetic marker to Korean fish, including no clear-cut distinction for Korean endemic species and/or genetically closely related species groups.
This study analyzed the relationship between distribution of Bolboschoenus planiculmis which is main food source of swans (national monument species) with environmental factors, discharge, rainfall, and salinity in Eulsuk-do from 2020 to 2023. The distribution area of B. planiculmis in Eulsuk tidal flat was 103,672 m2 in 2020, 95,240 m2 in 2021, 88,163 m2 in 2022, and 110,879 m2 in 2023, and represents a sharp decrease compared to the 400,925 m2 area recorded in 2004. From 2020 to 2023, the growth densities of B. planiculmis were 243.6±12.5 m-2, 135.45±7.38 m-2, 51.10±2.54 m-2, and 238.20±16.36 m-2, respectively, and the biomass was 199.89±28.01 gDW m-2, 18.57±5.12 gDW m-2, 6.55±1.12 gDW m-2, and 153.53±25.43 gDW m-2 in 2020, 2023, 2021, and 2022, respectively. Based on discharge during May~July, which affects plant growth, the left gate discharge of the estuary barrage from 2020 to 2023 was 62,322 m3 sec-1, 33,329 m3 sec-1, 6,810 m3 sec-1, and 93,641 m3 sec-1, respectively; rainfall was 1,136 mm, 799 mm, 297 mm, and 993 mm, respectively; and average salinity was 14.7±9.4 psu, 21.1±4.7 psu, 26.1±2.7 psu, and 14.5± 11.1 psu, respectively. In 2022, cumulative rainfall (978 mm, about 70% of the 30-year average) and discharge (43,226 m3 sec-1) decreased sharply, resulting in the highest mean salinity (25.46 psu), and the distribution area, density, and biomass of the B. planiculmis decreased sharply. In 2023, there was a rise in discharge with an increase in rainfall, leading to a decrease in salinity. Consequently, this environmental change facilitated the recovery of B. planiculmis growth.
This study was conducted to investigate the current status of seagrass species in the Nakdong River estuary from May to June 2023. To survey the seagrass habitat area, the Nakdong River estuary was divided into seven zones. Aerial photography using drones was conducted to find seagrass areas, GPS tracking was carried out on foot in the intertidal zone and by boat and SCUBA diving in the subtidal zone. To analyze the seagrass status, we measured the morphological characteristics, shoot density, and biomass of representative seagrass species in each zone. Four seagrass species were found in this area: Zostera japonica, Z. marina, Ruppia maritima, and Phyllospadix japonicus. The distribution areas of each species was 338.2 ha, 92.9 ha, 0.9 ha, and 1.4 ha, respectively, with a total area of 432.5 ha. Z. japonica was widely distributed in most of the tidal flats and mudflats of the Nakdong River estuary, while Z. marina was restricted to Nulcha-do, Jinu-do, and Dadae-dong. R. maritima occurred within the habitat of Z. japonica in Eulsukdo and Myeongji mudflats, and P. japonicus inhabited rocky areas in Dadae-dong. The shoot density of each species was 4,575.8±338.3 shoots m-2, 244.8±12.0 shoots m-2, 11,302.1±290.0 shoots m-2, and 2862.5±153.5 shoots m-2, respectively. The biomass of each species was 239.7±18.5 gDW m-2, 362.3±20.5 gDW m-2, 33.3±1.2 gDW m-2, and 1,290.0±37.0 gDW m-2, respectively. The results of this study revealed that Z. japonica was dominant in the Nakdong River estuary. In particular, Z. japonica habitats of Eulsukdo, Daema-deung, and Myeongji mudflats were identified as the largest in Korea. The Nakdong River estuary is an important site of ecological, environmental, and economic value, and will require continuous investigation and management of the native seagrasses.
Bolboschoenus planiculmis has been acknowledged as a key species in whooper swans (Cygnus cygnus) habitat by providing food for this migratory waterfowl. B. planiculmis wetlands are being degraded by water shortages and salinization caused by anthropogenic activities and climate changes. In 2004, the distribution of B. planiculmis in the tidal flats of the Nakdong Estuary was 2,475,568 m2, and in 2021, the distribution area was 798,731 m2, which decreased by 32.3%. In order to restore the degraded B. planiculmis wetlands, shoot transplantation and seed sowing were tentatively used in three places with different salinity and water levels. The average density per unit area in September at the optimal growth period after planting were A (fresh water level 50 cm) 58±15.65 m-2, B (brackish water level 0~5 cm) 188±63.83 m-2, C (brackish water level 0 cm or less) 188±45.13 m-2. The tubers were observed as A 0 g dw m-2, B 25.32±2.94 g dw m-2, and C 13.39±0.91 g dw m-2. Tubers were distributed in the soil, with only 3.0% at the 10~20 cm depth but 97.0% at the 0~10 cm depth. In contrast, the germination rate of B. planiculmis seeds was observed to be 0%. Results of this study provide technical support for the restoration of B. planiculmis wetland and the improvement in the quality of whooper swans habitat.
낙동강 하구 기수생태 복원이 본격으로 논의가 진행 전인 2016년까지는 하류 수위의 예측을 위해 하구에서 수km 떨어진 기존 조위관측소(부산 및 가덕도)의 측정 자료를 활용하여 분석을 수행하였지만, 조위와 위상 차이로 인해 예측이 용이하지 않았다. 따라서, 낙 동강 하굿둑 인접 외해역에서 조석 영향을 받는 수위관측치를 이용하여 조석조화분해를 통한 정밀한 조위 예측 산정의 필요성이 대두되 어 본 연구를 수행하였다. 연구의 방법으로는 낙동강하굿둑 인근 외해역에서 10분 간격으로 기간별 관측자료의 저장상태 및 이상자료 유 무를 확인하고, 조석조화분해 프로그램인 TASK2000(Tidal Analysis Software Kit) Package를 이용하여 관측조위와 예측조위를 1대 1 비교하여 회귀상관분석을 수행하였다. 분석 결과, 관측조위와 예측조위간의 상관도는 0.9334로 높게 나타났으며, 당해 연도의 조위예측 분석시 직전 연도의 1년 조석관측 자료를 조화분해하여 산출된 조화상수를 이용하여 조위예측을 실시하면 보다 정확한 결과를 산출할 수 있음을 확인 하였다. 이를 바탕으로 2022년 예측조위를 생성하여 낙동강 하구 기수생태 복원의 해수유입량의 산정에 활용 중이다.
낙동강하굿둑의 건설로 원활한 용수 공급이 이루어졌으나, 하구 수생태계의 종적 연결성을 단절시켰다. 이에 낙동강 하굿둑 개방에 대한 사회적 요구가 지속적으로 제기되어 왔으며, 2017년부터 낙동강하구역 기수생태계 복원을 위한 노력이 본격화되었다. 낙동강 하구에는 다양한 어종이 서식해 왔으며, 이들의 서식·이동 특성은 상이하므로 이를 고려한 수문운영은 기수생태계 복원에 필수적이다. 이에 본 연구에서는 낙동강하구에 서식·이동하는 어류를 모니터링을 통해 확인하였으며, 방류 시 수문운영 형태별, 개도별 평균 유속을 산출하여, 어종에 따른 원활한 소상 가능성을 분석하였다. 또한 대상어종을 선정하고, 주 분포 수심에 따른 수문운영 형태를 제시하는 등 낙동강 하구역의 기수생태계 복원을 적극적으로 수행하기 위한 수문운영 방안을 제시하였다.
본 연구는 낙동강하굿둑 개방으로 인한 하구 인근의 식생 변화를 모니터링하기 위해서 현재 식생에 대해서 조사하고, 하구수변식생평가지수를 통해서 식생의 건강성을 평가하였다. 장기모니터링의 첫 번째 조사로 낙동강하구 인근의 6개 구역에 대해서 2021년 7월과 10월 2차례 수행하였으며, 식생모니터링 및 수생식물, 수변식물, 육상식물의 종조성, 분포밀도 조사를 진행하였다. 조사구역 내에서 확인된 관속식물은 82과 192속 230종 1아종 28변종 3품종 262분류군으 로 파악되었다. KREVI를 통한 식생건강성 평가 결과는 1, 6번 구역이 두 차례 조사에서 모두 ‘매우 좋음’ 등급이었고, 2, 4번 구역은 ‘매우 좋음’에서 ‘좋음’으로 2차 조사결과가 낮게 산정되었으며, 3, 5번 구역은 1차 조사에 비해 2차 조사결과가 1등급 상향되었다. 조사구역 대부분의 건강성 등급이 대체로 높게 평가되었다. 기수역 조성을 위한 수문개 방 후 잠재자연식생의 대부분은 갈대군락으로 이루어질 것으로 예상되며, 수역과 인접한 버드나무군락의 경우 다소 면적이 좁아질 수 있으나 군락 형태를 유지하고, 염분농도가 매우 낮은 내륙지역 담수역의 경우 갈대가 대부분을 차지하며, 일부 물억새, 부들 등의 군락이 분포할 것으로 사료된다. 장기모니터링을 통해 이런 예상되는 변화를 관찰하 며, 건강한 기수역이 조성될 수 있도록 하굿둑 개방 운영방안 등 대책이 수립되어야 할 것으로 판단된다.
The Ministry of Oceans and Fisheries promoted the installation of eel-ladder for the purpose of creating inland water resources. Currently, eel-ladder have been installed and operated at the Geumgang Estuary Bank (2018), Yeongam Embankment (2019), and Asanman Embankment (2020). In this study, the number of glass eels in eel-ladder in 2021 was monitored and factors affecting the rise that from ocean to river of eels were investigated. Glass eels in eel-ladder were found when the salinity was relatively low, and they started when the freshwater and seawater temperatures were above 20℃. Comparing the number of occurrences by year, the largest number of glass eels was observed in 2021, but it is judged that this is not according to the distribution of glass eels in sea, but rather as a result of the investigator’s eel-ladder repair and guidance on illegal fishing.
The fish community in the Seomjin River-Seomjin River Estuary-Gwangyang Bay coast continuum was investigated three times from March 2019 to October 2019. The collected species at the eight sites during the survey period were 49 species belonging to 31 families, including two endangered species. According to Bray-Curtis similarities, observations were divided into four groups based on the fish community composition; two groups (group 1, 2) and two uncategorized groups (group 3, 4). ANOSIM based on spatial and temporal groupings indicated that the spatial differences in fish communities (R=0.398, P=0.001) were relatively more important than the temporal differences (analysis of similarities, R=0.273, P=0.002). In particular, there were significant differences between groups 1 and 2 (analysis of similarities, R=0.556, P=0.001), and similarity percentage analysis revealed that Argyrosomus argentatus (9.4%), Favonigobius gymnauchen (6.9%) and Konosirus punctatus (5.9%) contributed to these differences of fish assemblages for each group. The fish fauna distributed in the Seomjin River-Gwangyang Bay ecosystem were spatially divided and the number of species and number of individuals showed seasonal differences. This study could be a basis for understanding changes in the fish community and implementing conservation and management strategies on major species within a continuous environment of the river-estuary-ocean continuum.
The Bayesian algorithm model is a model algorithm that calculates probabilities based on input data and is mainly used for complex disasters, water quality management, the ecological structure between living things or living-non-living factors. In this study, we analyzed the main factors affected Korean Estuary Trophic Diatom Index (KETDI) change based on the Bayesian network analysis using the diatom community and physicochemical factors in the domestic estuarine aquatic ecosystem. For Bayesian analysis, estuarine diatom habitat data and estuarine aquatic diatom health (2008~2019) data were used. Data were classified into habitat, physical, chemical, and biological factors. Each data was input to the Bayesian network model (GeNIE model) and performed estuary aquatic network analysis along with the nationwide and each coast. From 2008 to 2019, a total of 625 taxa of diatoms were identified, consisting of 2 orders, 5 suborders, 18 families, 141 genera, 595 species, 29 varieties, and 1 species. Nitzschia inconspicua had the highest cumulative cell density, followed by Nitzschia palea, Pseudostaurosira elliptica and Achnanthidium minutissimum. As a result of analyzing the ecological network of diatom health assessment in the estuary ecosystem using the Bayesian network model, the biological factor was the most sensitive factor influencing the health assessment score was. In contrast, the habitat and physicochemical factors had relatively low sensitivity. The most sensitive taxa of diatoms to the assessment of estuarine aquatic health were Nitzschia inconspicua, N. fonticola, Achnanthes convergens, and Pseudostaurosira elliptica. In addition, the ratio of industrial area and cattle shed near the habitat was sensitively linked to the health assessment. The major taxa sensitive to diatom health evaluation differed according to coast. Bayesian network analysis was useful to identify major variables including diatom taxa affecting aquatic health even in complex ecological structures such as estuary ecosystems. In addition, it is possible to identify the restoration target accurately when restoring the consequently damaged estuary aquatic ecosystem.