검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 92

        2.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Seawater evaporation and purification powered by solar energy are considered as a promising approach to alleviate the global freshwater crisis, and the development of photothermal materials with high efficiency is imminent. In this study, cellulose nanofiber (CNF)/MXene/Ni chain (CMN) aerogels were successfully synthesized by electrostatic force and hydrogen bond interaction force. CMN10 achieved a favorable evaporation rate as high as 1.85 kg m− 2 h− 1 in pure water, and the corresponding evaporation efficiency could be up to 96.04%. Even if it is applied to seawater with multiple interference factors, its evaporation rate can still be 1.81 kg m− 2 h− 1. The superior seawater evaporation activity origins from the promoted separation of photoexcited charges and photothermal conversion by the synergy of Ni chain and MXene, as well as the water transport channel supported by the 3D structure frame of CNF. Most importantly, CMN aerogel can maintain water vapor evaporation rates above 1.73 kg m− 2 h− 1 under extreme conditions such as acidic (pH 2) and alkaline (pH 12) conditions. In addition, various major ions, heavy metals and organic pollutants in seawater can be rejected by CMN10 during desalination, and the rejection rates can reach more than 99.69%, ensuring the purity of water resources after treatment. This work shows the great potential of CMN aerogel as a high-efficiency solar evaporator and low-cost photothermal conversion material. Cellulose nanofiber (CNF)/MXene/Ni chain (CMN) aerogels demonstrated high evaporation of water from sea water.
        4,300원
        3.
        2023.11 구독 인증기관·개인회원 무료
        Nuclear power plants in Korea stores approximately 3,800 drums of paraffin solidification products. Due to the lack of homogeneity, these solidification products are not allowed to be disposed of. There is therefore a need for the separation of paraffin from the solidification products. This work developed an equipment for a selective separation of paraffin from the solidification product using the vacuum evaporation and condensational recovery method in a closed system. The equipment mainly consists of a vacuum evaporator and a condensational deposition recovery chamber. Nonisothermal vacuum TGAs, kinetic analyses and kinetic predictions were conducted to set appropriate operation conditions. Its basic operability under the established conditions was first confirmed using pure paraffin solid. Simulated paraffin solidification product fixing dried boric acid waste including nonradioactive Co and Cs were then fabricated and tested for the capability of selective separation of paraffin from the simulated waste. Paraffin was selectively separated without entertainment of Co and Cs. It was confirmed that the developed equipment could separate and recover paraffin in the form of nonradioactive waste.
        4.
        2023.11 구독 인증기관·개인회원 무료
        It has been investigated on the management of Strontium-90 in KAERI. It is needed to separate the solute from the salt solution for the recovery of strontium after the chlorination of the strontium oxide in molten salt. A vacuum distillation technology was used for the separation of strontium from the molten salt in our previous study. Strontium chloride was successfully carbonated by reactive distillation of SrCl2 – K2CO3 – LiCl – KCl system. In this study, it was tried to develop another route to recover strontium from the salt solution by a solid-solid reaction for avoiding the entrainment of product and the salt-K2CO3 reaction. Reactive distillation experiments were carried out for SrCl2 - K2CO3 – LiCl – KCl system. The carbonation temperature and pressure were 520°C and 0.8 bar. After the carbonation reaction, the temperature was elevated to 820°C to remove KCl from the reaction product. SrCO3 and KCl peaks were found in the XRD analysis of the residual product. It could be concluded that SrCl2 can be successfully carbonated after salt removal by the solid-solid reaction.
        5.
        2023.07 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        One-dimensional MgO nanostructures with various morphologies were synthesized by a thermal evaporation method. The synthesis process was carried out in air at atmospheric pressure, which made the process very simple. A mixed powder of magnesium and active carbon was used as the source powder. The morphologies of the MgO nanostructures were changed by varying the growth temperature. When the growth temperature was 700 °C, untapered nanowires with smooth surfaces were grown. As the temperature increased to 850 °C, 1,000 °C and 1,100 °C, tapered nanobelts, tapered nanowires and then knotted nanowires were sequentially observed. X-ray diffraction analysis revealed that the MgO nanostructures had a cubic crystallographic structure. Energy dispersive X-ray analysis showed that the nanostructures were composed of Mg and O elements, indicating high purity MgO nanostructures. Fourier transform infrared spectra peaks showed the characteristic absorption of MgO. No catalyst particles were observed at the tips of the one-dimensional nanostructures, which suggested that the one-dimensional nanostructures were grown in a vapor-solid growth mechanism.
        4,000원
        6.
        2022.10 구독 인증기관·개인회원 무료
        Boric acid-containing B-10 is used in a nuclear reactor as a coolant and absorbs thermal neutrons generated during nuclear fission in the primary circuit. Boron-containing coolant water waste is generated from maintenance, floor drain, decontamination, and reactor letdown flows. There are two options for aqueous solution waste of boric acid. One is recycling and discharge through filtration, ion exchange, and reverse osmosis. The other is immobilization after evaporation and crystallization processes. The dry powder of boric acid waste liquid can be immobilized by cement, polymer, etc. Before the mid-1990s, concentrated boric acid waste was solidified with a cement matrix. To overcome the disadvantage of low waste loading of cement waste form, a method of solidifying with paraffin was adopted. However, paraffin solids were insufficient to be disposed of as final waste. Paraffin is a kind of soft solidified material and has low compressive strength and poor leaching resistance. As a result, it was decided as an unsuitable form for disposal. In KOREA, paraffin waste form was adopted for boric acid waste treatment in the 1990s. A large amount of paraffin waste forms about 20,000 drums (200 l drum) were generated to treat boric acid waste and were stored in nuclear power sites without disposal. In this study, we want to obtain high-purity boric acid waste by oxidizing and decomposing solid paraffin waste form through a boric acid catalytic reaction. In this reaction, paraffin is separated in the form of various by-products, which can then be treated through a liquid waste treatment device or an exhaust gas treatment device. The proper temperature for sample decomposition during the catalytic reaction was set through TGA analysis. Compositions of by-products and residues generated at each stage of the reaction could be analyzed to determine the state during the reaction. Finally, the boric acid waste powder was perfectly separated from paraffin waste form with disposable products through this pyrolysis process.
        7.
        2022.10 구독 인증기관·개인회원 무료
        For the decommissioning or continuous long-term power generation of nuclear power plants, it is necessary to transfer the spent nuclear fuel from the wet storage pool to the dry storage. Spent nuclear fuel should go through the drying process, which is the first step of dry storage. The most important part in the drying process is the removal of the residual water. The spent fuel might be stored in a dry storage system for a long time. The integrity of internal components and spent fuel cladding should be maintained during the storage period. If residual water is present, problems such as aging of metal materials, oxidation of cladding, and the hydride-reorientation could occur. The presence or absence of residual water after vacuum drying is evaluated by pressure. If there is residual water in the vacuum drying process, it evaporates easily at low pressure to form water vapor pressure and the internal pressure rises. In the recent EPRI High burn up demonstration test, the gas inside the canister that satisfied the dryness criteria was extracted and analyzed. It showed that the water content was higher than the expected value. We are conducting verification studies on the pressure evaluation method, which is an indirect evaluation method of vacuum drying. The vacuum drying test was performed on small specimens at Sandia National Laboratory, and quantitative residual water evaluation was also performed. The report did not mention a detailed method for the assessment of residual water. Based on the test results of SNL, direct residual water evaluation was performed using energy balance. If the dryness criteria were satisfied, the quantitative amount of residual water was also evaluated. As a result, almost the same result as the evaluation result of SNL was derived, and it was confirmed that most of the water was removed when the dryness criteria was satisfied.
        8.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        해수에 유출된 유류는 대기와 해수와의 접촉을 통해 다양한 풍화 과정(증발, 확산, 분산, 유화, 용해, 산화, 침전 및 생물분 해 등)을 통해 물리·화학적 변화와 함께 생물학적 분해과정을 겪는다. 본 연구에서는 여러 가지 풍화작용 중 가장 즉각적이고 빠르며 오염물질의 질량에 가장 큰 영향을 미치는 인자라고 알려진 증발(evaporation)에 대한 영향을 확인해보고자 하였다. 휘발유, 등유, 경유 를 대상으로 25 ℃(해수 연평균 온도)와 35℃(적도 부근 온도) 조건에서 유류의 휘발특성을 비교하였다. 이를 위해, 일정 기간마다 채취 한 유류를 전처리하여 GC/MS 분석을 수행하고, 탄화수소의 변화량을 계산하여 비교하였다.
        4,000원
        11.
        2021.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 논문에서는 ~1.5 μm의 기공 크기를 가지는 고투과도 알파 알루미나 지지체 위에 도포된 서스펜션의 증발유도 자기조립 현상을 이용하여 중간층을 형성하는 새로운 코팅 방식을 소개한다. 새로운 코팅 방법으로 만들어진 중간층은 일반 적으로 사용되는 담지법으로 코팅된 중간층과 비교하여 표면거칠기와 불균일도가 낮아 코팅에 적합하였다. 복합막 지지체로 서의 평가를 위해 제조된 지지체는 감마 알루미나 복합막 제조에 사용되었다. 메조 기공을 가지는 감마 알루미나 복합막은 반복코팅 없이도 매크로 기공 크기의 결함이 존재하지 않았으며 일반적으로 널리 사용되는 100~200 nm의 기공 크기를 가지 는 지지체로부터 만들어진 같은 두께의 복합막과 비교하여 2.3배 이상의 높은 질소투과도를 보였다.
        4,000원
        12.
        2020.07 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Tin oxide (SnO2) nanocrystals are synthesized by a thermal evaporation method using a mixture of SnO2 and Mg powders. The synthesis process is performed in air at atmospheric pressure, which makes the process very simple. Nanocrystals with a belt shape start to form at 900 oC lower than the melting point of SnO2. As the synthesis temperature increases to 1,100 oC, the quantity of nanocrystals increases. The size of the nanocrystals did not change with increasing temperature. When SnO2 powder without Mg powder is used as the source material, no nanocrystals are synthesized even at 1,100 oC, indicating that Mg plays an important role in the formation of the SnO2 nanocrystals at temperatures as low as 900 oC. X-ray diffraction analysis shows that the SnO2 nanocrystals have a rutile crystal structure. The belt-shaped SnO2 nanocrystals have a width of 300~800 nm, a thickness of 50 nm, and a length of several tens of micrometers. A strong blue emission peak centered at 410 nm is observed in the cathodoluminescence spectra of the belt-shaped SnO2 nanocrystals.
        4,000원
        15.
        2019.07 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Zinc oxide(ZnO) micro/nanocrystals are grown via thermal evaporation of ZnO powder mixed with Mn powder, which is used as a reducing agent. The ZnO/Mn powder mixture produces ZnO micro/nanocrystals with diverse morphologies such as rods, wires, belts, and spherical shapes. Rod-shaped ZnO micro/nanocrystals, which have an average diameter of 360 nm and an average length of about 12 μm, are fabricated at a temperature as low as 800 °C due to the reducibility of Mn. Wireand belt-like ZnO micro/nanocrystals with length of 3 μm are formed at 900 °C and 1,000 °C. When the growth temperature is 1,100 °C, spherical shaped ZnO crystals having a diameter of 150 nm are synthesized. X-ray diffraction patterns reveal that ZnO had hexagonal wurtzite crystal structure. A strong ultraviolet emission peak and a weak visible emission band are observed in the cathodoluminescence spectra of the rod- and wire-shaped ZnO crystals, while visible emission is detected for the spherical shaped ZnO crystals.
        4,000원
        16.
        2018.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        ZnO crystals with different morphologies are synthesized through thermal evaporation of the mixture of Zn and Cu powder in air at atmospheric pressure. ZnO crystals with wire shape are synthesized when the process is performed at 1,000 oC, while tetrapod-shaped ZnO crystals begin to form at 1,100 oC. The wire-shaped ZnO crystals form even at 1,000 oC, indicating that Cu acts as a reducing agent. As the temperature increases to 1,200 oC, a large quantity of tetrapod-shaped ZnO crystals form and their size also increases. In addition to the tetrapods, rod-shaped ZnO crystals are observed. The atomic ratio of Zn and O in the ZnO crystals is approximately 1:1 with an increasing process temperature from 1,000 oC to 1,200 oC. For the ZnO crystals synthesized at 1,000 oC, no luminescence spectrum is observed. A weak visible luminescence is detected for the ZnO crystals prepared at 1,100 oC. Ultraviolet and visible luminescence peaks with strong intensities are observed in the luminescence spectrum of the ZnO crystals formed at 1,200 oC.
        4,000원
        18.
        2018.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We propose a speedy two-step deposit process to form an Au electrode on hole transport layer(HTL) without any damage using a general thermal evaporator in a perovskite solar cell(PSC). An Au electrode with a thickness of 70 nm was prepared with one-step and two-step processes using a general thermal evaporator with a 30 cm source-substrate distance and 6.0 × 10−6 torr vacuum. The one-step process deposits the Au film with the desirable thickness through a source power of 60 and 100 W at a time. The two-step process deposits a 7 nm-thick buffer layer with source power of 60, 70, and 80 W, and then deposits the remaining film thickness at higher source power of 80, 90, and 100W. The photovoltaic properties and microstructure of these PSC devices with a glass/FTO/TiO2/perovskite/ HTL/Au electrode were measured by a solar simulator and field emission scanning electron microscope. The one-step process showed a low depo-temperature of 88.5 oC with a long deposition time of 90 minutes at 60 W. It showed a high depo-temperature of 135.4 oC with a short deposition time of 8 minutes at 100 W. All the samples showed an ECE lower than 2.8% due to damage on the HTL. The two-step process offered an ECE higher than 6.25% without HTL damage through a deposition temperature lower than 88 oC and a short deposition time within 20 minutes in general. Therefore, the proposed two-step process is favorable to produce an Au electrode layer for the PSC device with a general thermal evaporator.
        4,000원
        19.
        2017.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        ZnO micro/nanocrystals with different morphologies were synthesized by thermal evaporation of various zinc source materials in an air atmosphere. Zinc acetate, zinc carbonate and zinc iodide were used as the source materials. No catalysts or substrates were used in the synthesis of the ZnO crystals. The scanning electron microscope(SEM) image showed that the morphology of ZnO crystals was strongly dependent on the source materials, which suggests that source material is one of the key factors in controlling the morphology of the obtained ZnO crystals. Tetrapods, nanogranular shaped crystals, spherical particles and crayon-shaped crystals were obtained using different source materials. The X-ray diffraction(XRD) pattern revealed that the all the ZnO crystals had hexagonal wurtzite crystalline structures. An ultraviolet emission was observed in the cathodoluminescence spectrum of the ZnO crystals prepared via thermal evaporation of Zn powder. However, a strong green emission centered at around 500 nm was observed in the cathodoluminescence spectra of the ZnO crystals prepared using zinc salts as the source materials.
        3,000원
        1 2 3 4 5