검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 11

        1.
        2016.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Populus euramericana is emerging as a viable feedstock for producing bioethanol from renewable resources. Steam explosion pretreatment of P. euramericana can solubilize a significant portion of the hemicellulosic component and enhance the glucose conversion of the remaining cellulose for fermentation into ethanol. In this study, steam explosion condition of P. euramericana is performed in a steam explosion reactor at severity log Ro 4.02 and severity log Ro 4.37. Glucose conversion varied from 72.3% to 80.1% of steam exploded P. euramericana at severity log Ro 4.02 and severity log Ro 4.37. Ethanol yields(%) based on sugar content after enzymatic hydrolysis after 48 h fermentation ranged from 87.0% to 88.4%. As a result, from 100 g of raw material, 14.0 g of ethanol are recovered of 47.3 g available cellulose content. This research of steam explosion pretreatment was a promising method to improve glucose conversion and ethanol yield for bioethanol production.
        4,000원
        2.
        2011.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        A high thermal conductive AlN composite coating is attractive in thermal management applications. In this study, AlN-YAG composite coatings were manufactured by atmospheric plasma spraying from two different powders: spray-dried and plasma-treated. The mixture of both AlN and YAG was first mechanically alloyed and then spray-dried to obtain an agglomerated powder. The spray-dried powder was primarily spherical in shape and composed of an agglomerate of primary particles. The decomposition of AlN was pronounced at elevated temperatures due to the porous nature of the spray-dried powder, and was completely eliminated in nitrogen environment. A highly spherical, dense AlN-YAG composite powder was synthesized by plasma alloying and spheroidization (PAS) in an inert gas environment. The AlN-YAG coatings consisted of irregular-shaped, crystalline AlN particles embedded in amorphous YAG phase, indicating solid deposition of AlN and liquid deposition of YAG. The PAS-processed powder produced a lower-porosity and higher-hardness AlN-YAG coating due to a greater degree of melting in the plasma jet, compared to that of the spray-dried powder. The amorphization of the YAG matrix was evidence of melting degree of feedstock powder in flight because a fully molten YAG droplet formed an amorphous phase during splat quenching.
        4,000원
        3.
        2006.04 구독 인증기관·개인회원 무료
        The kneading process and formulations of feedstock obviously affect the quality of MIM products. In the present work, the rheological behaviour of the composite MIM feedstock, metal matrix (Cu) with few additions of ceramic powders (Al2O3), was measured by a self-designed/manufactured simple capillary rheometer. Experimental results show that the distribution between powders and binder is more uniformly when blending time increased. Though high powder loading will increase the feedstock viscosity, the fluidity reveals relatively stable through the load curves of extrusion. Besides, the temperature-dependence of viscosity of the feedstock approximately follows an Arrehnius equation. Basing on Taguchi’s method, the kneading optimization conditions and the rheological model of the feedstock were established, respectively.
        4.
        2006.04 구독 인증기관·개인회원 무료
        In this paper, rheological characteristics of Metal Injection Moulding (MIM) feedstock using locally binder of palm stearin are presented. The feedstock consisted of 316L-grade stainless steel powder with three different particle sizes and the binders comprise palm stearin and polyethylene. The viscosity of MIM feedstock at different temperatures and shear rates was measured and evaluated. Results showed that, the feedstock containing palm stearin exhibited suitable rheological properties and suitable to produce a homogeneous feedstock that is favorable for injection molding process.
        5.
        2006.04 구독 인증기관·개인회원 무료
        To lower the cost of MIM products, the gate and runner materials and green parts with defects are usually recycled. It is necessary to understand what causes the recycled products to deteriorate. The results show that the viscosity of the 1R (recycled once) feedstock was slightly lower than that of the fresh material. However, as the number of recyclings increased, the viscosity increased, while the density decreased, and more defects were noticed duri ng solvent debinding. These deteriorations were mainly caused by the increase of the melting point of the backbone binder and the oxidation of the filler or paraffin wax.
        6.
        2006.04 구독 인증기관·개인회원 무료
        [ ] composite powders were produced by high energy mechanical milling of a mixture of Al and powders followed by a combustion reaction. The powders were subsequently thermally sprayed on H13 steel substrates. Microstructural examination was conducted on the composite powders and thermally sprayed coatings, using X-ray diffractometry (XRD) and scanning electron microscopy (SEM). The performance of the coatings was evaluated in terms of micro-hardness and thermal fatigue. The thermally sprayed coatings performed very well in the preliminary thermal fatigue tests and showed no wetting tendency to molten aluminum.
        7.
        2006.04 구독 인증기관·개인회원 무료
        Small powder size is very useful in achieving detailed structures. STS 316 nanopowders with an average diameter of 100 nm and were utilized to produce feedstock. The mixing behavior of the feedstock indicated that the nanoparticle feedstock produced the highest mixing torque at various powder loading compared to the micropowder feedstock. The nanoparticles feedstocks showed that elastic properties are dominant in flow behavior and high viscosity. Conversely the micropowders feedstocks, viscous properties are dominant in flow behavior and less viscosity, nanopowders feedstock perform lower flow activation energy than feedstock with bigger particles.
        8.
        2002.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In the viscosity measurement of PIM feedstock, slip correction methods require a number of experiments and produce a high level of error. In this study, a rotational rheometer with a parallel-discs configuration having different surface roughness was tried to minimize the effect of the slip phenomenon. Disc surface was prepared in 3 different roughness conditions - a smooth and 2 roughened surfaces. Results with the roughened surfaces were compared with the results obtained with a slip correction method. Relationship between powder characteristics such as size and shape and a surface roughness of the disc was examined for feedstock of 4 different powders with a same binder. As results, the effect of the slip phenomenon could be sufficiently minimized on the roughened surface in most cases. However, the effect of the slip phenomenon could not be sufficiently minimized for feedstock of a round-particular-shape powder and in the case of very narrow gap size.
        4,000원
        10.
        2008.06 KCI 등재 서비스 종료(열람 제한)
        Chemical composition and enzymatic saccharification characteristics of hemp woody core were investigated by their chemical composition analysis and enzymatic saccharification with commercially available cellulases (Celluclast 1.5L and Novozym 342). Hemp woody core have higher xylan and lower lignin contents than its bast fiber. Based on hemicelluloses and lignin composition, hemp woody core is similar with hardwood biomass. However, cellulose was more easily converted to glucose than xylan to xylose and this trend was confirmed both hemp woody core and yellow poplar. Hemp woody core biomass shows higher saccharification than yellow poplar (hardwood biomass) based on cellulose and xylan hydrolysis. With easier enzymatic saccharification in cellulose and xylan, and similar chemical composition, hemp woody core have better biorefinery feedstock characteristics than hardwood biomass.