AR (alkali resistant)-glass fibers were developed to provide better alkali resistance, but there is currently no research on AR-glass fiber manufacturing. In this study, we fabricated glass fiber from AR-glass using a continuous spinning process with 40 wt% refused coal ore. To confirm the melting properties of the marble glass, raw material was put into a (platinum) Pt crucible and melted at temperatures up to 1,650 °C for 2 h and then annealed. To confirm the transparent clear marble glass, visible transmittance was measured and the fiber spinning condition was investigated by high temperature viscosity measurement. A change in diameter was observed according to winding speed in the range of 100 to 700 rpm. We also checked the change in diameter as a function of fiberizing temperature in the range of 1,240 to 1,340 °C. As winding speed increased at constant temperature, fiber diameter tended to decrease. However, at fiberizing temperature at constant winding speed, fiber diameter tended to increase. The properties of the prepared spinning fibers were confirmed by optical microscope, tensile strength, modulus and alkali-resistance tests.
One of the key challenges for the commercialization of carbon nanotube fibers (CNTFs) is their large-scale economic production. Among CNTF spinning methods, surfactant-based wet spinning is one of the promising techniques for mass producing CNTFs. Here, we investigated how the coagulation bath composition affects the spinnability and the properties of CNTFs in surfactant-based wet spinning. We used acetone, DMAc, ethanol, and IPA as coagulants and analyzed the relationship between coagulation bath composition and the properties of CNTFs in terms of kinetic and thermodynamic coagulation parameters. From a kinetic perspective, we found that a low mass transfer rate difference (MTRD) is favorable for wet spinning. Based on this finding, we mixed the coagulant bath with solvent in a proper ratio to reduce the MTRD, which generally improved the wet spinning. We also showed that the coagulation strength, a thermodynamic parameter, should be considered. We believe that our research can contribute to establishment of surfactant-based wet spinning of CNTFs.
In this study, polyimide (PI)-based activated carbon fibers (ACFs) were prepared for application as electrode materials in electric double-layer capacitors by varying the steam activation time for the PI fiber prepared under identical cross-linking conditions. The surface morphology and microcrystal structural characteristics of the prepared PI-ACFs were observed by field-emission scanning electron microscopy and X-ray diffractometry, respectively. The textural properties (specific surface area, pore volume, and pore size distribution) of the ACFs were calculated using the Brunauer–Emmett–Teller, Barrett–Joyner–Halenda, and non-local density functional theory equations based on N2/ 77 K adsorption isotherm curve measurements. From the results, the specific surface area and total pore volume of PI-ACFs were determined to be 760–1550 m2/ g and 0.36–1.03 cm3/ g, respectively. It was confirmed that the specific surface area and total pore volume tended to continuously increase with the activation time. As for the electrochemical properties of PI-ACFs, the specific capacitance increased from 9.96 to 78.64 F/g owing to the developed specific surface area as the activation time increased.
Carbon fibers of polyacrylonitrile (PAN) type were coated with nickel nanoparticles using a chemical reduction method in alkaline hydrazine bath. The carbon fibers were firstly heated at 400 °C and then chemically treated in hydrochloric acid followed by nitric acid to clean, remove any foreign particles and functionalized its graphitic surfaces by introducing some functional groups. The functionalized carbon fibers were coated with nickel to produce 10 wt% Cf/Ni nanocomposites. The uncoated heat treated and the nickel coated carbon fibers were investigated by SEM, EDS, FTIR and XRD to characterize the particle size, morphology, chemical composition and the crystal structure of the investigated materials. The nickel nanoparticles were successfully deposited as homogeneous layer on the surface of the functionalized carbon fibers. Also, the deposited nickel nanoparticles have quazi-spherical shape and 128–225 nm median particle size. The untreated and the heat treated as well as the 10 wt% Cf/Ni nanocomposite particles were further reinforced in ethylene vinyl acetate (EVA) polymer separately by melt blending technique to prepare 0.5 wt% Cf-EVA polymer matrix stretchable conductive composites. The microstructures of the prepared polymer composites were investigated using optical microscope. The carbon fibers as well as the nickel coated one were homogenously distributed in the polymer matrix. The obtained samples were analyzed by TGA. The addition of the nickel coated carbon fibers to the EVA was improved the thermal stability by increasing the thermal decomposition temperature Tmax1 and Tmax2. The electrical and the mechanical properties of the obtained 10 wt% Cf/Ni nanocomposites as well as the 0.5 wt% Cf-EVA stretchable conductive composites were evaluated by measuring its thermal stability by thermogravimetric analysis (TGA), electrical resistivity by four probe method and tensile properties. The electrical resistivity of the fibers was decreased by coating with nickel and the 10 wt% Cf/Ni nanocomposites has lower resistivity than the carbon fibers itself. Also, the electrical resistivity of the neat EVA is decreased from 3.2 × 1010 to 1.4 × 104 Ω cm in case of the reinforced 0.5 wt% Cf/Ni-EVA polymer composite. However, the ultimate elongation and the Young’s modulus of the neat EVA polymer was increased by reinforcing with carbon fibers and its nickel composite.
Copper-coated carbon fibers have excellent conductivity and mechanical properties, making them a promising new lightweight functional material. One of the main challenges to their development is the poor affinity between carbon fiber and metals. This paper selects different carbon fibers for copper electroplating experiments to study the effect of carbon fiber properties on the interface bonding performance between the copper plating layer and carbon fibers. It has been found that the interfacial bonding performance between copper and carbon fiber is related to the degree of graphitization of carbon fiber. The lower the degree of graphitization of carbon fiber, the smaller the proportion of carbon atoms with sp2 hybrid structure in carbon fiber, the stronger the interfacial bonding ability between carbon fiber and copper coating. Therefore, carbon fiber with lower graphitization degree is conducive to reducing the falling off rate of copper coating and improving the quality of copper coating, and the conductivity of copper-plated carbon fibers increases with the decrease of graphitization degree of carbon fibers. The conductivity of copper-plated carbon fibers increases by more than six times when the graphitization degree of carbon fibers decreases by 23.9%. This work provides some benchmark importance for the preparation of highquality copper-plated carbon fibers.
Evaporative emissions, a major cause of air pollution, are primarily produced by automobiles and can be recovered using adsorbents. This study investigated the effect of the textural properties of polyimide (PI)-based activated carbon fibers (PIACFs) on the adsorption and desorption performance of n-butane, which are a type of evaporative emissions. PI-ACFs were prepared by varying the activation time while maintaining the identical crosslinking and carbonization conditions. The surface morphology and microstructural properties of the ACFs were examined using a field emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD), respectively. The textural properties of ACF (specific surface area, pore volume, and pore size distribution) were analyzed using N2/ 77 K adsorption and desorption isotherm curves. The n-butane adsorption and desorption performance were evaluated according to modified ASTM D5228. From the results, the specific surface area and total pore volume of ACFs were determined to be 680–1480 m2/ g and 0.28–1.37 cm3/ g, respectively. Butane activity (BA) of the ACFs increased from 14.1% to 37.1% as the activation time increased, and especially it was found to have highly correlated with pore volume in the 1.5–4.0 nm range.
In this study, we utilized a multi-step stabilization method, incorporating dry-oxidation, to produce high-density polyethylene (HDPE)-based activated carbon fibers. This stabilization was achieved through electron-beam irradiation, sulfonation, and dry oxidation. The stabilized fibers were carbonized and activated at 900 ℃. The crystallite characteristics of the activated carbon fibers were observed using X-ray diffraction, and their surface morphologies were analyzed through scanning electron microscopy. The textural properties were analyzed using N2/ 77 K adsorption–desorption isothermal curves. And leveraging the microdomain model, we explored the influence of these stabilization methods on the HDPE-based activated carbon fibers texture properties. The results show that HDPE fibers treated with sulfonation only at 100 ℃ for 60 min were not sufficiently cross-linked and were completely decomposed during the carbonization stage. However, the sulfonated fibers treated with the new dry-oxidation process maintained their shapes and were successfully activated. The specific surface area of the resulting activated carbon fibers was as much as 2000 m2/ g.
This study aimed to fabricate composites with high thermal conductivity using diglycidyl ether of bisphenol-A (DGEBA), incorporating carbon fiber cloth (CFC) and graphene as reinforcing agents. Notably, the dispersion of graphene within the DGEBA matrix was enhanced through surface modification via a silane coupling agent. The effects of CFC and graphene addition on the impact strength, thermal conductivity, and morphology of the composites were examined. The experimental results showed that the incorporation of 6 wt% CFC resulted in a substantial (16-fold) increase in impact strength. Furthermore, the introduction of 6 wt% CFCs along with 20 wt% graphene led to a remarkable enhancement in thermal conductivity to 5.7 W/(m K), which was approximately 22 and 4 times higher than the intrinsic thermal conductivities of pristine DGEBA and the CFC/DGEBA composite, respectively. The increased impact strength is ascribed to the incorporation of CFC and silane-modified graphene. Additionally, the gradual increase in thermal conductivity can be attributed to the enhanced interaction between the acidic silane-modified graphene and the basic epoxy–amine hardener within the system studied.
The purpose of this study is to review the available literature on the effectiveness of fibers in preventing early-age shrinkage cracking on cementitious concrete. The overview describes the widely used ASTM C1579 (Standard Test Method for Evaluating Plastic Shrinkage Cracking of Restrained Fiber Reinforced Concrete (Using a Steel Form Insert) for plastic shrinkage cracking. The past literature used crack length, width, or area to describe and quantify cracks on concrete specimens. To keep things simple, this review expresses the length, width or area as a percentage of the control specimen. Finally, the study establishes a relationship between fiber volume and aspect ratio on plastic shrinkage and compressive strength of concrete. It was concluded that fiber is sufficient enough to mitigate plastic shrinkage cracking. An increase in fiber volume and aspect ratio reduces the early-age cracking of concrete but harm its compressive strength.
A thorough knowledge and understanding of the structure–property relationship between thermal conductivity and C-fiber morphology is important to estimate the behavior of carbon fiber components, especially under thermal loading. In this paper, the thermal conductivities of different carbon fibers with varying tensile modulus were analyzed perpendicular and parallel to the fiber direction. Besides the measurement of carbon fiber reinforced polymers, we also measured the thermal conductivity of single carbon fibers directly. The measurements clearly proved that the thermal conductivity increased with the tensile modulus both in fiber and perpendicular direction. The increase is most pronounced in fiber direction. We ascribed the increase in tensile modules and thermal conductivity to increasing anisotropy resulting from the orientation of graphitic domains and microvoids.
Cellulose has experienced a renaissance as a precursor for carbon fibers (CFs). However, cellulose possesses intrinsic challenges as precursor substrate such as typically low carbon yield. This study examines the interplay of strategies to increase the carbonization yield of (ligno-) cellulosic fibers manufactured via a coagulation process. Using Design of Experiments, this article assesses the individual and combined effects of diammonium hydrogen phosphate (DAP), lignin, and CO2 activation on the carbonization yield and properties of cellulose-based carbon fibers. Synergistic effects are identified using the response surface methodology. This paper evidences that DAP and lignin could affect cellulose pyrolysis positively in terms of carbonization yield. Nevertheless, DAP and lignin do not have an additive effect on increasing the yield. In fact, combined DAP and lignin can affect negatively the carbonization yield within a certain composition range. Further, the thermogravimetric CO2 adsorption of the respective CFs was measured, showing relatively high values (ca. 2 mmol/g) at unsaturated pressure conditions. The CFs were microporous materials with potential applications in gas separation membranes and CO2 storage systems.
To improve the thermophysical properties of Al alloy for thermal management materials, the Cu-coated carbon fibers (CFs) were used as reinforcement to improve the thermal conductivity (TC) and the coefficient of thermal expansion (CTE) of Al-12Si. The CFs reinforced Al matrix (CFs/Al) composites with different CFs contents were prepared by stir casting. The effects of the CFs volume fraction and Cu coating on the microstructure, component, TC and CTE of CFs/Al composites were investigated by scanning electron microscopy with EDS, X-ray diffraction, thermal dilatometer and thermal dilatometer. The results show that the Cu coating can effectively improve the interface between CFs and the Al-12Si matrix, and the Cu coating becomes Al2Cu with Al matrix after stir casting. The CFs/Al composites have a relative density greater than 95% when the volume fraction of CFs is less than 8% because the CFs uniform dispersion without agglomeration in the matrix can be achieved by stir casting. The TC and CTE of CFs/Al composites are further improved with the increased CFs volume fraction, respectively. When the volume fraction of CFs is 8%, the CFs/Al composite has the best thermophysical properties; the TC is 169.25 W/mK, and the CTE is 15.28 × 10– 6/K. The excellent thermophysical properties of CFs and good interface bonding are the main reasons for improving the thermophysical properties of composites. The research is expected to improve the application of Al matrix composites in heat dissipation neighborhoods and provide certain theoretical foundations.
본 연구에서는 PVA(Poly Vinyl Alcohol)섬유와 GO(Graphene Oxide)를 혼입한 섬유보강 콘크리트(FRC)의 역학적 특성 을 평가하고자 하였다. GO와 PVA 섬유를 동시에 혼입한 FRC 각각의 재료를 단일로 사용하였을 때보다 기대효과가 다소 미흡 하였지만, 각 재료의 하이브리드화로 인장강도가 개선되면서 PVA 섬유 혼입률 0.1∼0.3%과 GO 혼입률 0.025%에서 우수한 효 과를 얻을 수 있었다. 특히 PVA 섬유는 0.3%로 혼합하였을 때 부작용을 최소화하면서 최대의 효과를 보였지만, 적절한 GO 배 합비를 조절할 필요가 있으며 FRC내 GO와 PVA 섬유의 최적배합을 구하기 위한 추가적인 연구가 필요할 것으로 사료된다.
현장에 적용하는 콘크리트 강도가 증가함에 따라 초고성능 콘크리트의 적용 분야가 넓어지고 있다. 초고성능 콘크리 트에는 강섬유를 일반적으로 사용하고 있지만, 이를 대체하기 위해 다양한 섬유를 연구에 적용하고 있다. 대표적으로 슈퍼섬유 라고 알려진 아라미드 섬유가 있다. 본 연구에서는 초고성능 콘크리트의 특성이 구조물 보수보강 및 내진보강에 적용하기에 적 합하다고 판단하여, 슈퍼섬유 중 하나인 파라아리미드 섬유와 조합한 복합섬유를 혼입한 초고성능 콘크리트를 보-기둥 접합부에 내진보강재로 활용하여 특성을 분석하였다. 초고성능 콘크리트의 내진보강 효과를 확인하였으며 내진상세를 적용한 실험체와 유사한 거동을 확인하였다. 초고성능 콘크리트의 높은 강도로 인해 기존 콘크리트가 파괴되는 양상이 나타나 초고성능 콘크리 트의 보수보강 효과를 모두 발휘하지 못하고 있어 추가 연구를 통해 최적의 보강단면을 설정한다면 내진보강재료로 활용할 수 있을 것으로 판단된다.
This paper investigates the effects of aspect ratio and volume fraction of hooked-end normal-strength steel fibers on the compressive and flexural properties of high-strength concrete with specified compressive strength of 60 MPa. Three types of hooked-end steel fibers with aspect ratios of 64, 67 and 80 were considered and three volume fractions of 0.25%, 0.50% and 0.75% for each steel fiber were respectively added into each high-strength concrete mixture. The test results indicated that the addition of normal-strength steel fibers is effective to improve compressive and flexural properties of high-strength concrete but fiber aspect ratio had little effect on the modulus of elasticity and compressive strength. As steel fiber content and aspect ratio increased, flexural beahvior of notched high-strength concrete beams was effectively improved.
With a strive to develop light-weight material for automotive and aerospace applications, aluminum-based hybrid nanocomposites (AHNCs) were manufactured utilizing the compocasting approach in this study. Chopped carbon fibers (CFs) are reinforced along with different weight fractions of nanoclay (1–5%) in the matrix of AA6026 forming AHNCs. The AHNCs specimens were examined by microstructural analysis, mechanical characterization, fatigue, and corrosion strength as per ASTM guidelines. Electroless plating method is adopted for coating CFs with copper to improve the wettability with matrix. SEM pictures of manufactured composites reveal thin inter-dendritic aluminum grains with precipitate particle of eutectic at intergranular junctions, as well as nanoclay particles that have precipitated in the matrix. Tensile strength (TS) rises with inclusion of nanoclay up to a maximum of 212.46 MPa for 3% nanoclay reinforcement, after which the TS is reduced due to non-homogeneity in distribution, agglomeration and de-bonding of nanoparticles. Similarly, micro-hardness increases with addition of 3% nanoclay after which it decreases. Higher energy absorption was achieved with 3% nanoclay reinforced hybrid and a significant improvement in flexural strength was obtained. With addition of both CFs and nanoclay, the fatigue strength of the hybrid composite tends to increase due to flexible CFs and high surface area nanoclays which strengthen the grain boundaries until 3% addition. Addition of nanoclay lowers the corrosion rate with nanoclays filling the crevices and voids in the matrix.
The evolvement in the microstructure and electrical properties of PAN-based carbon fibers during high-temperature carbonization were investigated. The study showed that as the heat treatment temperature increases, the change of carbon fiber resistivity around 1100 °C can be divided into two stages. In the first stage, the carbon content of the fiber increased rapidly, and small molecules such as nitrogen were gradually released to form a turbostratic of carbon crystal structure. The resistivity dropped rapidly from 3.19 × 10− 5 Ω·m to 2.12 × 10− 5 Ω·m. In the second stage, the carbon microcrystalline structure gradually became regular, and the electron movement area gradually became larger. At this time, the resistivity further decreases, from 2.12 × 10− 5 Ω·m to 1.59 × 10− 5 Ω·m. During carbonization, the tensile strength of carbon fiber first increased and then decreased. This is because the irregular and disordered graphite structure is formed first. As the temperature rose, the graphite layer spacing decreased and the grain thickness gradually increases. The modulus also gradually increased.