검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 114

        81.
        2017.12 KCI 등재 서비스 종료(열람 제한)
        Dual-color fluorescence in situ hybridization karyotype analysis was created using repetitive sequences including two types of rDNA repeats (45S and 5S rDNAs) and Arabidopsis-type telomere sequence repeats. The somatic metaphase cells of Carthamus tinctorius were observed as diploids (2n=2x=24). A symmetrical or slightly asymmetrical karyotype with seven pairs of metacentric and five pairs of submetacentric chromosomes was observed. The lengths of the somatic metaphase chromosomes ranged from 4.18 to 6.53 ㎛, with a total length of 60.71 ㎛. One locus of 45S rDNA was located on the pericentromeric regions of three pairs of chromosomes and the other pair was situated on the terminal regions of the short arms of a single pair of chromosomes. One locus of 5S rDNA was detected on the interstitial regions of the short arms of two pairs of chromosomes. Arabidopsis-type telomeric repeats were detected on the terminal regions of all pairs of chromosomes. Co-localization of loci between telomeric repeats and 45S rDNA was observed in a single pair of chromosomes. The results provide additional information for the existing physical mapping project of C. tinctorius and will also serve as a benchmark to a more intricate cytogenetic investigation of C. tinctorius and its related species.
        82.
        2017.05 서비스 종료(열람 제한)
        Background : Management of air temperature are known to primarily affecting on physiological properties and yield in plant. Methods and Results : The effect of air temperature on characteristics of photosynthesis and chlorophyll fluorescence in Cnidium officinal were investigated using growth chamber after cultivating for 24 hours under controlled condition. Net photosyntheis rate, transpiration was measured at 1,000 μmol m-2 s-1 of photon flux density and chlorophyll fluorescence was analyzed by OJIP method. Net photosyntheis rate was highest in treatment of 25℃. Although transpiration rate was lowest, water use efficience was also in treatment of 25℃. Stomatal conductance was mainly influenced from ambient climatric factors such as vapor pressure deficit. As results of chlorophyll fluorescence by OJIP analysis, maximum quantum yield (Fv/Fm) of photosystem II (PSII), PIabs and the relative activities per reaction center such as ABS/RC, DIo/RC were not changed at air temperature. Therefore, elevated air temperatue during short term influence the dark reaction in photosystem through controlling a water use efficience and transpiration. Conclusion : This result show that 25℃ of air temperature may be a adequate temperature to improving the efficiency of photosynthesis in Cnidium officinale.
        83.
        2016.12 KCI 등재 서비스 종료(열람 제한)
        The objective of this study was to find a rapid determination of the hot air stress in maize (Zea mays L.) leaves using a portable chlorophyll fluorescence imaging instrument. To assess the photosynthetic activity of maize leaves, an imaging analysis of the photochemical responses of maize was performed with chlorophyll fluorescence camera. The observed chlorophyll imaging photos were numerically transformed to the photochemical parameters on the basis of chlorophyll a fluorescence. Chlorophyll a fluorescence imaging (CFI) method showed that a rapid decrease in maximum fluorescence intensity (Fm) of leaf occurred under hot air stress. Although no change was observed in the maximum quantum yield (Fv/Fm) of the hot air stressed maize leaves, the other photochemical parameters such as maximum fluorescence intensity (Fm) and Maximum fluorescence value (Fp) were relatively lowered after hot air stress. In hot air stressed maize leaves, an increase was observed in the nonphotoquenching (NPQ) and decrease in the effective quantum yield of photochemical energy conversion in photosystem II (Φ PSII). Thus, NPQ and ΦPSII were available to be determined non-destructively in maize leaves under hot air stress. Our results clearly indicated that the hot air could be a source of stress in maize leaves. Thus, the CFI analysis along with its related parameters can be used as a rapid indicating technique for the determining hot air stress in plants.
        84.
        2016.09 KCI 등재 서비스 종료(열람 제한)
        In this study, we synthesized fluorescent sensors from rhodamine 6G derivatives and hydroxy coumarin. The synthetic routes to the rhodamine 6G derivatives containing hydroxy coumarin are shown in Fig. 1. Two derivatives were synthesized through Schiff base reactions. The structures of the new compounds were confirmed by melting point, 1H-NMR, and GC-MS analyses. The compounds were found to selectively bind to tin (Sn2+) ion by fluorescence titration using various metal cations. Longer carbon chains gave more sensitivity. Sn2+ ions exhibited the strongest fluorescence among the nime ions. The binding analysis using Job plots suggested that compounds form 1:1 complexes with the Sn2+ ions.
        85.
        2016.05 서비스 종료(열람 제한)
        Background : Management of air temperature are known to primarily affecting on physiological properties and yield in plant. Methods and Results : The effect of air temperature on characteristics of photosynthesis and chlorophyll fluorescence in Schisandra chinensis Baillon were investigated under controlled temperature using growth chamber. Net photosyntheis rate, transpiration was measured at 1,000 μmol m-2 s-1 of photon flux density and chlorophyll fluorescence was analyzed by OJIP method. Net photosyntheis rate and transpiration rate was higher in treatment of 25℃. As results of chlorophyll fluorescence by OJIP analysis, maximum quantum yield (Fv/Fm) of photosystem II (PSII) and PIabs was higher in treatment of 25℃ which reflects the relative reduction state of PSII. But in treatment of 35℃ the relative activities per reaction center such as ABS/RC, DIo/RC were higher than in treatment of 25℃ which implied that the relative reduction of electron transport at PSI and increasement of photo inhibition at reaction center. Conclusion : This result implies that 25℃ of air temperature may be a adequate temperature to improving the efficiency of photosynthesis through controlling a photosystem in Schisandra chinensis Baillon.
        86.
        2015.12 KCI 등재 서비스 종료(열람 제한)
        The response of the freshwater microalga, Chlorella vulgaris, to heavy metal stress was examined based on chlorophyll fluorescence analysis to assess the toxic effects of heavy metals in freshwater ecosystems. When toxic effects were analyzed using regular chlorophyll fluorescence analysis, photosystem II activity(Fv/Fm) decreased significantly when exposed to Cu2+ and Hg2+ for 12 h, and decreased in the order of Hg2+ > Cu2+ > Cd2+ > Ni2+ when exposed for 24h. The effective photochemical quantum yield(Φ′PSII), chlorophyll fluorescence decrease ratio(RFd), minimal fluorescence yield(Fo), and non-photochemical quenching(NPQ), but not photochemical quenching(qP), responded sensitively to Hg2+, Cu2+, and Cd2+. These results suggest that Fv/Fm, as well as Φ′PSII, RFd, Fo, and NPQ could be used to assess the effects of heavy metal ions in freshwater ecosystems. However, because many types of heavy metal ions and toxic compounds co-occur under natural conditions, it is difficult to assess heavy metal toxicity in freshwater ecosystems. When Chlorella was exposed to heavy metal ions for 12 or 24h, Fv/Fm and maximal fluorescence yield(Fm) changed in response to Hg2+ and Cu2+ based on image analysis. However, assessing quantitatively the toxic effects of several heavy metal ions is challenging.
        87.
        2015.12 KCI 등재 서비스 종료(열람 제한)
        Background : Excessively high concentration of sodium ion causednutrient deficiency and significantly decrease growth. This study was carried out to determine the limiting concentration range of sodium ion in the soil of ginseng field. Methods and Results : The growth of the ginseng cultivar Chunpoong reduced with increase in salinity, and the rate of growth reduction was higher in shoots than that of roots. Particularly, ginseng plants cultivated at high level of nitrate nitrogen or sodium may suffer delayed development and stunted growth. Chlorophyll damage occurred on the leaves of ginseng planted in relatively high levels (> 0.2 c㏖+/㎏) of sodium ion, as determined by the fluorescence reaction. The incidence of physiological disorder in ginseng cultivated at 249 sites was correlated with the concentration of sodium ion in the soils. About 74% of ginseng fields in which physiological disorders occurred had concentrations of sodium ion in soil greater than 0.2 c㏖+/㎏. In contrast, the concentration of sodium ions at 51 of 85 sites where no damage occurred was relatively (0.05 c㏖+/㎏- 0.15 c +/㎏). Conclusions : The concentration of sodium ion in soil of ginseng fields can be classified into three levels optimum (≤ 0.15), permissible allowance (0.15 - 0.2) and excessive (> 0.2).
        90.
        2014.08 KCI 등재 서비스 종료(열람 제한)
        본 연구에서 사용한 증감지 구성 물질은 Gd2O2S:Tb3+이고 Spectrometer를 이용하여 관전압 증가에 따른 형광특성을 분석하였다. 관전압에 증가에 따른 방출 형광을 측정한 결과 청색, 녹색, 적색에 해당하는 형광을 확인하였고, 그 중에서 녹색 형광에 해당하는 5D4 - 7F5의 형광이 가장 강하게 나타났다. 또한 50 kVp와 120 kVp의 형광량을 비교한 결과 50 kVp의 형광량은 120 kVp의 9.56%에 해당하는 형광만 방출하는 것으로 나타났다. Gd2O2S:Tb3+ 증감지를 이용한 X-선 촬영에서 100 kVp 이상의 높은 관전압을 사용 할 경우 필름에 도달하는 형광량과 강도가 급격히 증가하므로 적정농도의 영상을 획득하기위한 주의가 요구되어진다.
        91.
        2014.07 서비스 종료(열람 제한)
        The purpose of this study was to establish a system for plant fluorescence image acquisition and to verify the possibility of plant fluorescence image analysis as a non-destructive method to screen the salt tolerance of soybean (Glycine max). Two-weeks-old seedlings of soybean at the V1 growth stage were treated with 0, 50, and 100 mM of NaCl for salt stress and plant fluorescence images were taken by CCD camera (EOS-600D, Canon, Japan) equipped with band pass filter (XNiteBPB, LPD LLC, USA) at 0, 15, 30, 60, 120 and 240 second after blue light exposure at 1 day after treatment. Red color intensity was extracted using MatLab 8.1 (The MathWorks Inc., USA) for estimation of plant fluorescence intensity. Red color intensity of soybean image decreased 0 (F0-10) to 240 (F240-250) second after blue light exposure irrespective of NaCl concentration, while F0-10/F240-250 decreased with NaCl concentration, resulting in significant relationship with plant fluorescence (Fv/Fm) and salt stress intensity. Therefore, our results suggest that our plant fluorescence image acquisition and analysis methods can be a part of high-throughput screening system for salt tolerance of soybean varieties
        93.
        2013.11 KCI 등재 서비스 종료(열람 제한)
        The effects of cadmium ions (Cd2+) on the Chl a fluorescence of Ricciocarpos natans were investigated in order to determine whether Chl fluorescence can be used as a biomarker to estimate the physiological responses of plants to cadmium stress. In all plants treated with Cd2+, the image of Fv/Fm, which represents the maximum photochemical efficiency of PSⅡ, changed as the Cd2+ concentration increased, when treated for 48 h or more. Changes of ΦPSⅡ and QP images were recognized even at 10 μM Cd2+. The Chl a O-J-I-P fluorescence transient was also affected even at 10 μM Cd2+. The fluorescence yield decreased considerably in steps J, I and P in plants treated with Cd2+, although a typical polyphasic rise was observed in non-treated plants. The Chl fluorescence parameters, Fm, Fv/Fo, Sm, SFIabs, PIabs and ETo/CS, decreased as the Cd2+ concentration increased, while the Mo and Kn parameters increased. Peroxidase activity decreased significantly and catalase activity increased as the Cd2+ concentration increased. Because of its sensitivity to Cd2+ Ricciocarpos natans is useful in experiments investigating the responses of plants to cadmium exposure. Several parameters (Fm, Fv/Fo, Sm, SFIabs, PIabs, ETo/CS, Mo and Kn) can be applied to determine quantitatively the physiological states of plants under cadmium stress.
        94.
        2013.06 KCI 등재 서비스 종료(열람 제한)
        The response of the freshwater microalga Chlorella vulgaris to mercuric ion (Hg2+) stress was examined using chlorophyll a fluorescence image analysis and O-J-I-P analysis as a way to monitor the toxic effects of mercury on water ecosystems. The levels of photosynthetic pigments, such as chlorophyll a and b and carotenoids, decreased with increasing Hg2+ concentration. The maximum photochemical efficiency of photosystem Ⅱ(Fv/Fm) changed remarkably with increasing Hg2+ concentration and treatment time. In particular, above 200 μM Hg2+, considerable mercury toxicity was seen within 2 h. The chlorophyll a fluorescence transient O-J-I-P was also remarkably affected by Hg2+; the fluorescence emission decreased considerably in steps J, I, and P with an increase in Hg2+ concentration when treated for 4 h. Subsequently, the JIP-test parameters (Fm, Fv/Fo, RC/CS, TRo/CS, ETo/CS, ΦPO, ΨO and ΦEO) decreased with increasing Hg2+ concentration, while N, Sm, ABS/RC, DIo/RC and DIo/CS increased. Therefore, a useful biomarker for investigating mercury stress in water ecosystems, and the parameters Fm, ΦPO, ΨO, and RC/CS can be used to monitor the environmental stress in water ecosystems quantitatively.
        95.
        2012.10 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        The rancidity of soybean (Glycine max L.) from Yeonhaeju, called “Bazaz”, in powder forms was evaluated through a fluorescence spectrum test (FST). The results from the FST were validated by comparing the TBA and acid values. Soybean powders were stored in 25, and 90℃ for 20 days. The maximum excitation and maximum emission of fluorescent compounds generated from the soybean powder during storage were observed at the 360 nm and 430-440 nm wavelengths, respectively. The mean particle size of soybean powder was maintained at 40 μm to avoid the dependence of the reaction area during measurement. According to the FST results, lipid oxidation did not actively progress during storage at 25℃. The fluorescence intensity (FI) from FST on the first day of storage was not significantly different from that on the last day of storage (day 20; p < 0.05), but the FI dramatically increased at 90℃. A smooth increase was observed in the initial stage; then, after 11 days of storage, the FI value increased by nearly 100% compared to that on the first day. The FI values were compared with TBA and acid values that were measured under the same storage conditions. All the values at 25℃ showed similar patterns during storage, but at 90℃, the FI and acid values showed similar patterns but the TBA decreased after reaching the maximum values on storage day 12. The results demonstrated that FST may be useful for measuring the rancidity of the powder form of soybean because it does not require extraction to measure the rancidity.
        96.
        2012.07 서비스 종료(열람 제한)
        Development of transgenic plant with desirable traits to cultivated plant is one of the important procedures in plant molecular breeding. However, applicable assessment of transgenic plant in laboratorial scale is not much except cultivating transgenic plant for a whole life in field condition. Here, we analyzed chlorophyll fluorescence in three transgenic soybean lines with AtMYB44 transcription factor for assessment of photosynthetic activity under abiotic stresses such as drought. Soybean varieties used in this study were ‘Bert’ and ‘Bert’ derived three transgenic soybeans, ‘AtMYB44 CM35101’, ‘AtMYB44 CM2471’, and ‘AtMYB44 CM4481’. Analyzed five different chlorophyll fluorescence variables are maximum PSII quantum yield (QY_max), steady state PSII quantum yield (QY_Lss), steady state non-photochemical quenching (NPQ_Lss), coefficient of photochemical quenching in steady-state (Qp_Lss), and fluorescence declineratio in steady-state (Rfd_Lss). To determine main chlorophyll fluorescence variable affected by abiotic stress, principal component analysis (PCA) was conducted with five chlorophyll fluorescence variables measured from four varieties. QY_Lss and NPQ_Lss were main chlorophyll fluorescence variables to evaluate abiotic stress, particularly in drought stress. In comparison with transgenic soybean lines based on chlorophyll fluorescence variables, ‘AtMYB44 CM2471’ and ‘AtMYB44 CM4481’ are more tolerant to drought than the others. Interestingly, three transgenic soybean lines which have a same AtMYB44 gene with different regions of chromosome revealed the quite different responses of chlorophyll fluorescence to drought treatment.
        97.
        2011.12 KCI 등재 서비스 종료(열람 제한)
        경 X선 형광분석 기법에 사용되는 X선 튜브는 X선의 휘도가 낮아 분석의 정밀도가 떨어지고 분석 시간 또한 오래 걸린다. 모세관 집광소자를 이용하면 X선 휘도의 이득(gain)을 최소 10 이상 얻을 수가 있다. 모세관 광학소자는 8.4keV의 텅스텐 특성방사선을 효율적으로 집광할 수 있도록 설계되었다. 파이렉스 유리로 된 모세관 모재를 풀러 (puller)를 이용하여 45 g의 추에 650˚의 온도를 가하여 모세관 광학소자를 제작하였다. 모세관 광학소자의 제작은 총 460분이 소요되었으며 제작된 모세관 광학소자의 길이는 87 mm, X선 입사부의 직경은 300 ㎛, 출구부의 직경은 192 ㎛로 제작되었다. 제작된 모세관 광학소자를 경 X선 형광분석에 적용하면 황(S)과 같은 경원소 검출의 정밀도를 높일 수 있을 것이다.
        98.
        2011.08 KCI 등재 서비스 종료(열람 제한)
        Conventional staining and fluorescence in situ hybridization (FISH) karyotypes of the non-genetically modified (GM) parental rice line, 'Nakdong' (Oryza sativa L. japonica), and its four GM rice lines, LS28 (event LS30-32-20-1), Cry1Ac1 (event C7-1-9-1), and LS28 × Cry1Ac1 (events L/C1-1-3-1 and L/C1-3-1-1) were analyzed using 5S and 45S rDNAs as probes. Both parental and transgenic lines were diploids (2n=24) with one satellite chromosome pair. The lengths of the prometaphase chromosomes ranged from 1.50 to 6.30 μm. Four submetacentric and eight metacentric pairs comprised the karyotype of 'Nakdong' and its four GM lines. One pair of 5S rDNA signals was detected near the centromeric region of chromosome g in both the parental and transgenic lines. The 45S rDNA signals were detected on the secondary constrictions of the satellite chromosome pair in both the parental and transgenic lines. There was no significant difference in chromosome size, length, and composition between 'Nakdong' and its four GM lines. This research was conducted as a preliminary study for chromosomal detection of transgenes in GM rice lines and would be useful for their breeding programs.
        1 2 3 4 5