검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 12

        1.
        2024.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Friction stir spot welding (FSSW) is a solid-state joining process and a rapidly growing dissimilar material welding technology for joining metallic alloys in the automotive industry. Welding tool shape and process conditions must be appropriately controlled to obtain high bonding characteristics. In this study, FSSW is performed on dissimilar materials AA5052-H32 aluminum alloy sheet and SPRC440 steel sheet, and the influence of the shape of joining tool and tool insertion depth during joining is investigated. A new intermetallic compound is produced at the aluminum and steel sheets joint. When the insertion depth of the tool is insufficient, the intermetallic compound between the two sheets did not form uniformly. As the insertion depth increased, the intermetallic compound layer become uniform and continuous. The joint specimen shows higher values of tensile shear load as the diameter and insertion depth of the tool increase. This shows that the uniform formation of the intermetallic compound strengthens the bonding force between the joining specimens and increases the tensile shear load.
        4,000원
        3.
        2019.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Since the directly bonded interface between TiAl alloy and SCM440 includes lots of cracks and generated intermetallic compounds(IMCs) such as TiC, FeTi, and Fe2Ti, the interfacial strength can be significantly reduced. Therefore, in this study, Cu is selected as an insert metal to improve the lower tensile strength of the joint between TiAl alloy and SCM440 during friction welding. As a result, newly formed IMCs, such as Cu2TiAl, CuTiAl, and TiCu2, are found at the interface between TiAl alloy and Cu layer and the thickness of IMCs layers is found to vary with friction time. In addition, to determine the relationship between the thickness of the IMCs and the strength of the welded interfaces, a tensile test was performed using sub-size specimens obtained from the center to the peripheral region of the friction-welded interface. The results are discussed in terms of changes in the IMCs and the underlying deformation mechanism. Finally, it is found that the friction welding process needs to be idealized because IMCs generated between TiAl alloy and Cu act to not only increase the bonding strength but also form an easy path of fracture propagation.
        4,000원
        4.
        2019.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We evaluate the properties of friction welded STK400 steel tube in terms of the relationship between microstructures and mechanical properties. Friction welding is conducted at a rotation speed of 1,600 rpm and upset time of 3-7 sec for different thicknesses of STK 400 tubes. To analyse the grain boundary characteristic distributions(GBCDs) in the welded zone, electron backscattering diffraction(EBSD) method is introduced. The results show that a decrease in welding time (3 sec.) creates a notable increase grain refinement so that the average grain size decreases from 15.1 μm in the base material to 4.5 μm in the welded zone. These refined grains achieve significantly enhanced microhardness and a slightly higher yield and higher tensile strengths than those of the base material. In particular, all the tensile tested specimens experience a fracture aspect at the base material zone but not at the welded zone, which means a soundly welded state for all conditions
        4,000원
        5.
        2017.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        This study was carried out to evaluate the developed microstructures and mechanical properties of friction welded A6063 alloy. For this work, specimens were prepared at a size of 12 mm Ø × 80 mm, and friction welding was carried out at a rotation speed of 2,000 RPM, friction pressure of 12 kgf/cm² and upset pressure of 25 kgf/cm². To perform an analysis of the grain boundary characteristic distributions, such as the grain size, orientation and misorientation angle distributions, the electron back-scattering diffraction method was used. In addition, in order to identify the dispersed intermetallic compounds of the base and welded materials, transmission electron microscopy was used. The experimental results found that the application of friction welding on A6063 led to significant grain refinement of the welded zone relative to that of the base material. Besides this, intermetallic compounds such as AlMnSi and Al2Cu were found to be dispersed with more refined size relative to that of the base material. This formation retains the mechanical properties of the welds, which results in the fracture aspect at the base material zone. Therefore, based on the developed microstructures and mechanical properties, the application of friction welding on A6063 could be used to obtain a sound weld zone.
        4,000원
        6.
        2013.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A5J32-T4 and A5052-H32 dissimilar aluminum alloy plates with thickness of 1.6 and 1.5 mm were welded by friction stir lap welding (FSLW). The FSLW were studied using different probe length tool and various welding conditions which is rotation speed of 1000, 1500 rpm and welding speed of 100 to 600 mm/min and material arrangement, respectively. The effects of plunge depth of tool and welding conditions on tensile properties and weld nugget formation. The results showed that three type nugget shapes such as hooking, void, sound have been observed with revolutionary pitch. This plunge depth and material arrangement were found to effect on the void and hooking for- mation, which in turn significantly influenced the mechanical properties. The maximum joint efficiency of the FSLWed plates was about 90% compared to base metal, A5052-H32 when the A5052-H32 was positioned upper plate and plunge depth was positioned at near interface between upper and lower plates.
        4,000원
        7.
        2012.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The microstructures and mechanical properties of friction stir welded lap joints of Inconel 600 and SS 400 were evaluated; friction stir welding was carried out at a tool rotation speed of 200 rpm and welding speed of 100 mm/min. Electron back-scattering diffraction and transmission electron microscopy were introduced to analyze the grain boundary characteristics and the precipitates, respectively. Application of friction stir welding was notably effective at reducing the grain size of the stir zone. As a result, the reduced average grain size of Inconel 600 ranged from 20μm in the base material to 8.5μm in the stir zone. The joint interface between Inconel 600 and SS 400 showed a sound weld without voids and cracks, and MC carbides with a size of around 50 nm were partially formed at the Inconel 600 area of lap joint interface. However, the intermetallic compounds that lead to mechanical property degradation of the welds were not formed at the joint interface. Also, a hook, along the Inconel 600 alloy from SS 400, was formed at the advancing side, which directly brought about an increase in the peel strength. In this study, we systematically discussed the evolution of microstructures and mechanical properties of the friction stir lap joint between Inconel 600 and SS 400.
        4,000원
        8.
        2011.07 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        This study was carried out to evaluate the microstructures and mechanical properties of a friction stir welded Ni based alloy. Inconel 600 (single phase type) alloy was selected as an experimental material. For this material, friction stir welding (FSW) was performed at a constant tool rotation speed of 400 rpm and a welding speed of 150~200 mm/min by a FSW machine, and argon shielding gas was utilized to prevent surface oxidation of the weld material. At all conditions, sound friction stir welds without any weld defects were obtained. The electron back-scattered diffraction (EBSD) method was used to analyze the grain boundary character distributions (GBCDs) of the welds. As a result, dynamic recrystallization was observed at all conditions. In addition, grain refinement was achieved in the stir zone, gradually accelerating from 19 μm in average grain size of the base material to 5.5 μm (150 mm/min) and 4.1 μm (200 mm/min) in the stir zone with increasing welding speed. Grain refinement also led to enhancement of the mechanical properties: the 200 mm/min friction stir welded zone showed 25% higher microhardness and 15% higher tensile strength relative to the base material.
        4,000원
        10.
        1994.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        페놀수지 결합재에 보강섬유의 종류에 따라서 내염섬유 보강 복합재(OFRP), 탄소섬유 보강 복합재(CFRP), 유리섬유 보강 복합재(GFRP), 아라미드 섬유 보강 복합재(AFRP)를 제조하였다. 각 보강섬유의 분율을 달리함에 따라 마찰계수 및 마모율을 측정하여 각 보강섬유의 특성이 미치는 영향을 관찰하였다. 아라미드의 섬유량이 45tw%일 때 평균 마찰계수가 0.353-0.383으로 가장 높게 나타난 반면에 핏치계 탄소섬유를 45wt% 보강한 경우 0.164-0.190으로 가장 낮게 나타났다. AFRP와 CFRP의 마모율은 낮게 나타내었으며, GFRP와 OFRP는 섬유분율이 증가함에 따라 급격히 증가하는 양상을 보였다. OFRP는 마모 diagram이 불안정하였으며 CFRP와 AFRP는 대체적으로 안정한 형태를 나타내었다. GFRp는 상당히 불안정한 마모diagram을 나타낸 것으로 보아 마찰 안정성이 가장 떨어짐을 알 수 있었다.
        4,000원
        12.
        1987.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        이종재 마찰용접재 강도특성과 초음파 반사계수와의 상관성에 관하여 실험적으로 연구한 결과의 요약은 다음과 같다. 1. 이종재 마찰용접 이음면에서의 초음파 반사계수를 펄스반사법에 의하여 측정산출할 수 있다. 2. 5MHz의 비교적 낮은 주파수의 탐촉자를 사용하므로써 시험편의 표면가공 오차를 무시할 수 있다. 3. 알루미늄과 스테인레스의 마찰용접에서는 용접조건으로 마찰가열시간이나 가열압력을 변수로 하였을 때보다 업셋가압력을 변수로 하였을 때 반사계수의 변화가 뚜렷하다. 4. 업셋가압력을 변수로 한 용접조건과 반사계수사이에는 선형적 상관관계가 있다. 5. 용접이음면에서의 이음인장강도와 반사계수와의 상관관계식을 정량적으로 도출할 수 있다. 6. 초음파 반사계수에 의해 이종재 마찰용접 품질의 비파괴적 평가가 가능하다
        4,000원