검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 46

        1.
        2023.11 구독 인증기관·개인회원 무료
        In general, systems are developed by repeatedly performing the processes of design, analysis, manufacturing, and performance testing. In particular, systems with temperature, pressure, and flow rate often utilize computational fluid dynamics tools at the design stage. In this paper, we aim to verify the reliability of the analysis results of Solidworks Flow Simulation, which is widely used in heat flow analysis at the design stage. A tube furnace was manufactured, various experiments were performed, and a study was conducted to compare the analysis results. The details of the experiment are as follows. First, an experiment was conducted in which the heater was heated to 900°C without insulating the exposed part of the tube. The detailed contents of the experiment are as follows; - Heating heater and measuring temperature without supplying flow inside the tube, - Tube flow supply (25°C, 15 lpm air) and heater heating/temperature measurement. Second, an experiment was performed in which the exposed part of the tube was insulated (thickness 50 mm) and the heater was heated to 900°C. The detailed contents of the experiment are as follows; - Insulate the outside of the tube except for the flanges at both ends of the tube, and heat the heater and measure the temperature without supplying flow inside the tube. - Insulate the outside of the tube except for the flanges at both ends of the tube, supply flow rate inside the tube (25°C, 15 lpm air) and measure heater heating/temperature. - Insulate the flange of the flow supply section, heat the heater and measure temperature without supplying flow inside the tube. - Insulate the flange of the flow supply section, heat the supply air (277°C, 15 lpm) and measure the temperature using a heating gun without heating the heater. - Insulate the flange of the flow supply section, supply heated air (277°C, 15 lpm) and measure heater heating/temperature. - Insulate the flange of the flow supply section and measure temperature according to heater heating (900°C) and supply temperature (25°C, 277°C 15 lpm). The following results were derived from the experimental and analysis results. - When the exposed part of the tube is insulated, the temperature inside the tube increases and the steady-state power decreases compared to non-insulated. - In areas with insulation, the temperature error between experiment and analysis results is not large. - When flow rate is supplied, there is a large temperature error in experiment and analysis results. - The temperature change after the center of the heater is not large for a temperature change of 15 lpm flow rate. From these results, it can be seen that Solidworks Flow Simulation has a significant difference from the experimental results when there is a flow rate in the tube. This was thought to be because the flow rate acts as a disturbance, and this cannot be sufficiently accounted for in the analysis. In the future, we plan to check whether there is a way to solve this problem.
        2.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In electric vehicles, the core is a secondary cell battery. Raw material is pulverized by the grinding disc in the Classifier Separator Mill (CSM) and rises through the Classifier Wheel. Both require characteristics to withstand high-speed rotation, including abrasion, corrosion, and shock. Our study analyzes the impact of RPM and heat source on temperature, convergence, and durability. In conclusion, high heat increases flow, while high RPM reduces the maximum temperature but may harm durability. Proper RPM settings enhance durability.
        4,000원
        3.
        2023.05 구독 인증기관·개인회원 무료
        In this paper, a basic study was conducted to observe the temperature inside the tube according to the heating temperature of the tube furnace. In a tube furnace, a tube is inserted, and the air space outside the tube is heated to increase the temperature of the gas inside the tube through conduction of the tube. Tube furnaces are widely used in research to capture volatile nuclides. In this case, a volatile nuclide capturing filter is inserted inside the tube, and an appropriate temperature is required to capture it. Since the tube furnace heats the air space outside the tube to the target temperature, a difference from the temperature inside the tube occurs. In particular, if a flow of gas occurs inside the tube, a larger temperature difference may occur. In order to confirm this temperature difference, an experimental device was constructed, and basic data was produced through several experiments. The following studies were conducted to produce data. First, the temperature of the air layer of the heating unit and the temperature inside the tube were measured in real time in the absence of gas flow inside the tube. Second, the temperature of the air layer of the heating unit and the temperature inside the tube were measured in real time while air having a certain temperature was flowing inside the tube. As a result of the experiment, when there is no flow inside the tube, when the heating target temperature is low, the temperature inside the tube is significantly lower than the target temperature, and when the target temperature is high, the temperature inside the tube approaches the target temperature. It was found that when there is about 20°C air flow inside the tube, the temperature inside the tube is significantly lowered even if the heating target temperature is high. In the future, additional research on changing the temperature of the gas flowing inside the tube will be conducted, and the results of this study are expected to greatly contribute to the design of a tube furnace that captures volatile nuclides.
        4.
        2023.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The shell & tube-type heat exchanger has been frequently used because it shows simple structure, easy manufacturing and wide operation conditions among many heat exchangers. This study aims to investigate the characteristics for thermal flow of coolant and the possibility of damage for tube equipped with shell due to thermal stress. For these purposes, The thermal flow of coolant in tube was simulated using ANSYS-CFX program and thus the behaviors of coolant were evaluated with standard k-ε turbulence model. As the results, as the flow rate of coolant in tube was increased, the mean relative pressure was also increased with quadratic curve, however, as the surface temperature of tube was increased, mean temperature difference was linearly increased. Finally it showed that the damage of tube could be predicted, that is, which tube was the most weak due to thermal stress.
        4,000원
        5.
        2022.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the cooling performance change according to the arrangement of the fin-tube heat exchanger using a single tube and the cooling performance change according to the air flow rate were studied. The arrangement of basic heat exchanger was set to 4 columns and 4 rows, and the performance change was studied while changing the columns and rows. In addition, the performance change was investigated by changing the air flow rate of the basic heat exchanger.
        4,500원
        6.
        2022.05 구독 인증기관·개인회원 무료
        The design of the high-level radioactive waste (HLW) repository is made for isolating the HLW from the groundwater system by using artificial and natural barriers. Granite is usually considered to be a great natural barrier for the HLW repository in various countries including Sweden, Canada, and Korea due to its low hydraulic permeability. However, many fractures that can act as conduits for groundwater and radionuclides exist in granite. Furthermore, the decay heat generated by the HLW can induce groundwater acceleration through the fracture. Since the direction, magnitude, and lasting time of the heat-induced groundwater flow can be differed depending on the fracture geometry, the effect of fracture geometry on the groundwater flow around the repository should be carefully analyzed. In this study, groundwater models were conducted with various fracture geometries to quantify the effect of various properties of fractures (or fracture networks) on the heat-induced groundwater flow. In all models, the pressure around the repository only lasted for a short period after it peaked at 0.1 years. In contrast, the temperature lasted for 10,000 years after the disposal inducing the convective groundwater flow. Single fracture models with different orientations were conducted to evaluate the variations in groundwater velocities around the repository depending on the fracture slope. According to the results, the groundwater velocity on the fracture was the fastest when the regional groundwater flow direction and the fracture direction coincided. In double fracture models, various inclined fractures were added to the horizontal fracture. Due to the intersecting, the groundwater flow velocity showed a discontinuous change at the intersecting point. Lastly, the discrete fracture network models were conducted with different fracture densities, length distributions, and orientations. According to the modeling results, the groundwater flow was significantly accelerated when the fracture network density increased, or the average fracture length increased. However, the effect of the fracture orientation was not significant compared to the other two network properties.
        8.
        2021.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        IMO에서는 선박으로부터 온실가스 감축을 위해 선박의 에너지효율 증진에 관한 논의를 진행하고 있다. 현재, 선박으로부터 발생되는 폐열을 이용한 ORC 발전 시스템을 적용함으로써 선박으로부터 높은 에너지 변환 효율을 기대할 수 있다. 이 기술은 물보다 더 낮은 온도 범위에서 증발하는 프레온 또는 탄화수소 계통의 유기 매체를 작동 유체로 사용한다. 이를 통해 상대적으로 낮은 저온에서 증기 (기체)를 생성 및 동력을 발생시킬 수 있다. 본 연구에서는 유기 랭킨 사이클인 ORC 발전 시스템에서 냉매와 폐열 사이 열·유동해석 (Analysis of Heat flow)을 3D 시뮬레이션 기법을 이용하여 구조물의 내·외부에 흐르는 유체가 온도 변화, 속도 변화, 압력 변화 및 질량 변화를 통해서 구조물에 어떤 영향을 미치는지를 분석하고자 하며, 동 연구는 이 기법을 이용하여 ORC 발전 시스템에서 냉매와 선박 주기 관의 배기가스로부터 일어나는 열교환기의 열전달을 해석하였다.
        4,000원
        9.
        2021.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, gas flow pattern and temperature distribution in a laboratory scale low temperature furnace for carbonization were numerically analyzed. The furnace was designed for testing carbonization process of carbon fibers made from polyimide(PI) precursor. Nitrogen gas was used as a working gas and it was treated as an ideal gas. Three-dimensional computational fluid dynamics analysis for steady state turbulent flow was used to analyze flow pattern and temperature field in the furnace. The results showed that more uniform velocity profile and axisymmetric temperature distribution could be obtained by varying mass flow rate at the inlets.
        4,000원
        10.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The effect of flow direction on heat transfer in water cooling channel of lithium-ion battery is numerically investigated. Battery Design StudioⓇ software is used for modeling electro-chemical heat generation in the battery and the conjugated heat transfer is analyzed with the commercial package STAR-CCM+. The result shows that the maximum temperature and temperature difference of battery with Type 1 are the lowest because the heat transfer in the entrance region near the electrode is enhanced. As the inlet velocity is increased, the maximum temperature and temperature difference of battery decreases but the pressure loss increases. The pressure loss in Type 2 channel is the lowest due to the shortest channel length, while the pressure loss with Type 3 or 4 channel is the highest because of the longest channel length. Considering heat transfer performance and pressure loss, Type 1 is the best cooling channel.
        4,000원
        12.
        2019.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the temperature, the absolute humidity, and the turbulent flow characteristics of exhaust air and supply air in the mixer were studied while changing the shape of the mixer of the white smoke reducing heat exchange system. Using Solidworks, the mixer of the white smoke reduction heat exchange system was created by 3-D model. Also, the mixed flow of supply air and exhaust air inside the mixer under the uniform inlet conditions was computed, using the solidworks flow simulation. Two types of improvement models were selected by using a perforated plate and a guide vane as a turbulent mixing flow control method of the mixer. The mean temperature and mean absolute humidity of the mixture were greatly decreased according to the internal shapes of Case 1, 2, and 3. The temperature difference between the inlet and outlet of the mixer Case 3 was 26℃. The exit temperature and absolute humidity reduction rates of Case 3 were 26.2% and 48.1%, respectively, compared with Case 1.
        4,000원
        13.
        2019.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the characteristics of the heat flow on SA(supply air) side of the white smoke reducing heat exchange system according to the change of SA velocity were analyzed in the winter condition (outside temperature 0℃). Also, the mixing process of SA and the EA(exhaust air) is presented in the psychrometric chart to confirm the possibility of reducing white smoke. Solidworks flow simulation was used to analyze the heat flow on the heat exchange system under uniform conditions. As the inflow velocity of SA increased, the temperature of SA decreased due to the convective heat transfer improvement due to the active flow in SA system. And the outlet temperature and absolute humidity of the mixing zone decreased significantly. At SA velocity 7 m/s, the outlet temperature and absolute humidity decreased to about 58% and 82%, respectively.
        4,000원
        14.
        2019.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Severe wall thinning is found on the tube of a low-pressure evaporator(LPEVA) module that is used for a heat recovery steam generator(HRSG) of a district heating system. Since wall thinning can lead to sudden failure or accidents that lead to shutdown of the operation, it is very important to investigate the main mechanism of the wall thinning. In this study, corrosion analysis associated with a typical flow-accelerated corrosion(FAC) is performed using the corroded tube connected to an upper header of the LPEVA. To investigate factors triggering the FAC, the morphology, composition, and phase of the corroded product of the tube are examined using optical microscopy, scanning electron microscopy combined with energy dispersive spectroscopy, and x-ray diffraction. The results show that the thinnest part of the tube is in the region where gas directly contacts, revealing the typical orange peel type of morphology frequently found in the FAC. The discovery of oxide scales containing phosphate indicates that phosphate corrosion is the main mechanism that weakens the stability of the protective magnetite film and the FAC accelerates the corrosion by generating the orange peel type of morphology.
        4,000원
        16.
        2018.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 DVR 내부 공기유동을 직접 제어하여 CPU의 온도를 낮추기 위한 유동제어 구조물을 제안하였다. 제안된 구조물은 세 개의 얇은 판의 형태로 구성되었으며, DVR 내부의 공기 유동을 포괄적으로 제어하여 CPU의 효율적인 방열을 유도하고자 하였다. DOE와 RSM을 이용한 매개변수 연구기법을 통해 유동제어 구조물의 형상을 최적화하였으며, 해석에는 유한체적방법을 이용한 유체역학 분석 패키지인 FlowVision을 사용하였다. 실제 DVR 기기에서의 실험을 통해 해석 결과를 검증한 결과 CPU의 온도가 16.1℃ 낮아짐을 확인하였다
        4,000원
        18.
        2018.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the CFD analysis was performed by changing the geometry of coil-tube diameter ratio, coil winding number, coil pitch, and cross section of the tube to investigate the heat flow characteristics of forced convection in a helical coil-tube heat exchanger using RSM (Reynolds Stress Model). As a result, the secondary flow was developed in the tube caused by the influence of centrifugal force. It improved the heat transfer on the outer side of the tube, but on the inner side was not performed well. And the temperature rose locally in the tube region. Also the pressure drop in the tube was proportional to the diameter ratio of the coil-tube and the inlet velocity, and it was found that pressure drop and friction factor were inversely proportional. When the coil winding number and coil pitch were increased, it affected heat transfer in the low speed range of 0.1 ~ 0.2 m/s, but did not affect the flow condition after this range.
        4,000원
        19.
        2017.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the heat flow characteristics of wave heat exchanger was investigated by being applied to the white smoke reduction system. Through numerical analysis, the heat transfer and flow characteristics of the wave heat exchanger with the change of inlet condition of air-side and water-side were analyzed. To investigate the temperature, the absolute humidity, heat transfer rate, pressure drop and turbulence characteristics of the wave heat exchanger, the simulation analysis was conducted by using the commercial computational fluid dynamics software (Solidworks Flow Simulation) under uniform flow conditions. As the inflow rate of air decreased and the inflow temperature of water increased, the heat transfer coefficient of the wave heat exchanger decreased. When the experimental conditions of water-side were the same, the air outlet temperature and absolute humidity of the wave heat exchanger increased with increasing inflow rate of air. To reduce the white smoke, the air outlet temperature and absolute humidity of the wave heat exchanger must be reduced. Therefore, the lower the air velocity and the water inflow temperature into the wave heat exchanger, the more effective it is.
        4,000원
        20.
        2016.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        단동 이중비닐하우스에서 수막에 의한 열전달 특성 및 가온효과를 구명하기 위하여 작물이 재배되는 수막온실의 실내외 기온과 수막의 수온 등을 계측하였고, 단위 피복면적당 수막에 의한 총 공급열량, 열관류율, 관류열량, 온실 내부로 전달되는 열량비율 변화를 비교·분석하였다. 1중과 2중사이의 기온은 외부기온보다는 수막유량과 공급수온에 따라 결정되는 것으로 나타났다. 수막유량이 증가할수록, 공급수온이 높을수록 수막과 2중 하우스 내부와의 열관류율(UW-IN)은 유의하게 증가하는 경향을 보였다. 그러나 수막유량과 공급수온이 일정조건(수 막유량 0.00266L·m-2·s-1, 공급수온 19.8oC) 이상에서는 UW-IN 값이 10W·m-2·oC-1 정도로 수렴되는 것으로 나타났다. 수막과 1·2중 공기 사이의 열관류율(UW-B)의 경우에도 수막유량 및 공급수온에 따라 증가하는 경향을 보였으나, 경향성은 상대적으로 작은 것으로 분석되었다. UW-B는 연구자에 따라 전체적으로 큰 차이를 보이고 있으며, 본 연구에서는 3.27~4.44W·m-2·oC-1의 범위를 보였다. 수막에 의한 총 공급열량(QW)과 온실 내외부로 전달 되는 관류열량(QW-IN, QW-B)의 경우, QW 값이 QW-IN과 QW-B의 합과 매우 유사하게 일치하고 있어 본 연구에서 제시한 결과가 신뢰성이 있음을 확인할 수 있었다. 수막에 의해 내부공기를 가열하는데 사용되는 열량은 최대 57% 수준으로 분석되었고, 우리나라 수막재배온실의 경우 약 22~28% 수준으로 판단된다. 본 연구는 농업인이 실제 사용하는 수막온실과 가장 유사한 조건에서 수막에 의한 온도변화, 열관류율과 관류열량을 계량화함으로써 향후 경제적인 수막온실 설계 시 활용할 수 있을 것으로 기대된다.
        4,000원
        1 2 3