초대형 자동차운반선(LCTC)의 높이는 선저에서 조타실까지 약 44~46m에 이르며, 자동차운반선이 대형화될수록 상부 무게가 하부 무게보다 무거운 중두선의 특징을 가진다. 이 연구는 선회 중 전도한 자동차운반선 골든 레이호(G호)의 최대 외방경사각을 추정하 여 사고 원인 규명과 유사사고 방지에 목적이 있다. 이론식으로 계산된 최대 외방경사각은 GM이 +3.0m 이상 상황에서 7.5°(19kn, 타각 35°), GM이 +1.85m인 상황에서 16.7°였다. 실험에 의한 수정식으로 계산한 최대 외방경사각은 GM이 +3.0m 이상 상황에서 10.5°(19kn, 타각 35°), GM이 +1.85m인 상황에서 23.3°를 보였다. G호는 전도사고 당시 도선사의 지시에 따라 속력 13kn, 우현 타각(10°→20°)을 사용하여 침 로 038°(T)에서 105°(T)로 변침 중이었다. 이 때 최대 외방경사각은 좌현으로 7.8° 내지 10.9°로 추정된다. 평상 시 외방경사각보다 2.2배 높 은 수치이다. 화물선의 최소 GoM은 IS coded에서 +0.15m 이상을 요구하고 있다. 전도된 G호도 +1.72m GoM을 확보하고 있었다. GoM에 대 한 기준 미달이 전도의 원인이 아니라, 선회 중 횡경사 모멘트에 대응할 수 있는 충분한 GoM을 확보하지 않아 전도된 것이다. 이 연구는 중앙해양안전심판원과 USCG의 사고 조사 결과를 뒷받침한다.
Background: Flat feet can be identified by assessing the collapse of the medial longitudinal arch (MLA) and these conditions can trigger epidemiological changes in the feet. Many of previous studies compared the muscle activity of lower body in terms of intervention and dynamics to treat the structural defect of flat feet. However, few studies have investigated or analyzed the muscle activity of gastrocnemius muscle in the subjects with flat feet.
Objects: This study investigated the differences in changes of medial and lateral plantar flexors in subjects with flat feet during bipedal heel-rise (BHR) task and analyzed the differences in muscle activity between two groups by measuring the electromyography (EMG) of abductor hallucis (AH), tibialis anterior (TA), medial gastrocnemius (MG), lateral gastrocnemius (LG).
Methods: A total of Twenty one adult females participated in this experiment. Subjects were assigned to groups according to the navicular drop test. The task was applied to the leg, where the heel lifting action prevailed. The muscle activity of the medial and lateral feet plantar flexors was evaluated, and the % maximum voluntary isometric contractions (%MVIC) of these were compared.
Results: For the difference between groups the muscle activity (%MVIC) of LG muscle was statistically significantly low in flat feet group compared to healthy feet group (flat feet: 64.57, healthy feet: 90.17; p < 0.05).
Conclusion: The results of this study will contribute to identifying the muscle activities of medial and lateral feet plantar flexors among subjects with flat feet, which can cause abnormal epidemiological changes in the feet.
Background: High-heeled shoes can change spinal alignment and feet movement, which leads to muscle fatigue and discomfort in lumbopelvic region, legs, and feet while walking.
Objects: This study aimed to identify the effects of different shoe heel heights on the walking velocity and electromyographic (EMG) activities of the lower leg muscles during short- and long-distance walking in young females.
Methods: Fifteen young females were recruited in this study. The experiments were performed with the following two different shoe heel heights: 0 ㎝ and 7 ㎝. All participants underwent an electromyographic procedure to measure the activities and fatigue levels of the tibialis anterior (TA), medial gastrocnemius (MG), rectus femoris (RF), and hamstring muscles with each heel height during both short- and long-distance walking. The walking velocities were measured using the short-distance (10-m walk) and long-distance (6-min walk) walking tests.
Results: Significant interaction effects were found between heel height and walking distance conditions for the EMG activities and fatigue levels of TA and MG muscles, and walking velocity (p<.05). The walking velocity and activities of the TA, MG, and RF muscles appeared to be significantly different between the 0 ㎝ and 7 ㎝ heel heights during both short- and long-distance walking (p<.05). Significant difference in the fatigue level of the MG muscle were found between the 0 ㎝ and 7 ㎝ heel heights during long-distance walking. In addition, walking velocity and the fatigue level of the MG muscle at the 7 ㎝ heel height revealed significant differences in the comparison of short- and long-distance walking (p<.05).
Conclusion: These findings indicate that higher shoe heel height leads to a decrease in the walking velocity and an increase in the activity and fatigue level of the lower leg muscles, particularly during long-distance walking.
The purpose of this study was to investigate the effect of heel off stairway walking exercise on the increase of muscle activity and balance activity of the ankle joint muscles
in university students with functional ankle instability. The conservative treatment for the control group consisted of stairway walking (n=10) and the experimental group consisted of heel off stairway walking (n=11). The therapeutic intervention of the control and experimental groups was performed a total of 12 exercise sessions, 3 times per week for 4 weeks. To compare the two groups, the level of ankle disability was assessed by using the EMG, BT4 and Pedoscan in pre-treatment and post-treatment. Muscle activity increased in both the experimental groups and control groups in each group, however there was no significant difference between the groups. Balance ability did not show any significant difference. This study demonstrates that heel-off stairway walking is effective in significantly increasing muscle activity, however did not significantly improve balance ability.
The aim of the present study was to investigate the effects of unilateral shoulder bag weight and heel heights on trunk muscle activities. This study recruited 40 healthy women in their twenties. Electromyography activities of rectus abdominis muscle, external abdominal oblique muscle, internal abdominal oblique muscle and erector spinae muscle during standing position were measured using a surface electromyography system. The overall muscle activities of the trunk muscles were significantly increased in the contralateral trunk muscles (p<.05). Inaddition, the trunk muscles overall activities on the contralateral side without the shoulder bag was positive correlation with the heel height and unilateral shoulder bag weight (p<.05). Both high-heeled wear and unilateral shoulder bags are fashion items that cause asymmetry in the trunk muscles of women in their twenties. These findings suggest that the increase in the weight and heel height of the unilateral shoulder bag in women cause asymmetry of trunk muscle activities.
The objectives of this study were to investigate whether heel height changes in the U.S. market occur in a cyclical pattern and heel heights show greater within-year variability over time. Heel height data from U.S. Vogue’s spring and fall editions were analyzed over the time period 1950~2014. A total of 1581 pieces of data were measured in millimeter units using Adobe Illustrator and standardized by dividing the height of the heel by the shoe length through the curved sole line. To analyze the cycle pattern of heel heights, the yearly averages were standardized by using three-year moving average technique to average out the irregular components of time series data and give a better indication of the long-term fluctuation of heel height. To identify the degree of within-year variability of heel height, the standard deviation of the average measurements for a year was calculated, and then decade averages were drawn from the yearly averaged standard deviation. One-way ANOVA was conducted to compare the within-year variability of data in heel height over the time period studied by decade. The results showed: First, there was a trend toward higher heels from the early 1950s to 2011. Second, four cyclical movements of heel height were observed from 1950 to 2007, and heel heights gradually decreased after 2008. Third, the within-year variability significantly increased over time, especially after the 1980s.
The purpose of this study was to determine the muscle activities of the erector spinae (ES), gluteus maximus (Gmax), gluteus medius (Gmed), and the hamstring (HAM) and the ratios of Gmax/ES, Gmax/HAM, and Gmed/HAM during the prone heel squeeze (PHS) with different knee flexion angles (45˚, 90˚, and 135˚). Fifteen young and healthy subjects (8 men, 7 women) were recruited for the study. Surface electromyography signals were collected on ES, Gmax, Gmed, and HAM during PHS. A separate one-way analysis of variance with repeated measures was used to determine the significance of the muscle activities of ES, Gmax, Gmed, and HAM and the ratios of Gmax/ES, Gmax/HAM, and Gmed/HAM with different knee flexion angles during PHS. There was a significant increase in the Gmax activity at the knee flexion of 90˚ in comparison with that of the 45˚ (p=.016). There were significant increases in the Gmed activity at the knee flexion of 90˚ (p=.008) and 135˚ (p=.006) in comparison with that of the 45˚. There were significant decreases in the HAM activity at the knee flexion of 90˚ (p=.009) and 135˚ (p=.004) in comparison with that of the 45˚. There were significant increases in the Gmax/HAM muscle activity ratio at the knee flexion of 90˚ (p=.007) and 135˚ (p=.012) in comparison with that of the 45˚. There were significant increase in the Gmed/HAM muscle activity ratio at the knee flexion of 135˚ in comparison with that of the 45˚ (p=.008). The knee flexion of 90˚ during PHS can induce decreasing activity of HAM and increasing activity of Gmax, and the knee flexion of 135˚ during PHS can induce decreasing activity of HAM and increasing activity of Gmed. Hence, PHS with different knee flexion positions could be considered for the different target muscle.
The purpose of this study was to evaluate the changes in the electromyographic (EMG) activity of the trunk and the lower limb muscles during quiet standing on an unstable surface while wearing low-heeled shoes (3 ㎝), high-heeled shoes (7 ㎝) and without footwear (0 ㎝) in 20 young healthy women. The subjects stood on an unstable surface for 30 seconds. We examined the differences in the EMG data of the erector spinae, rectus abdominis, biceps femoris, rectus femoris, tibialis anterior, and the gastrocnemius medialis muscle. A one-way repeated analysis of variance was used to compare the effects of shoe heel height on the EMG activity with the level of significance set at α=.05. The EMG activity of the erector spinae and the rectus femoris were significantly increased (p<.05) in the subjects who wore elevated heel height, while the tibialis anterior and the gastrocnemius medialis were significantly decreased (p<.05). However, the rectus abdominis and the biceps femoris exhibited no significant difference among the three conditions. The above results indicate that wearing high-heeled shoes may change the postural strategy. The findings of this study suggest that excessive heel height could contribute to an increased fall risk during quiet standing.
This study aimed to investigate the influence of shoe heel height and muscle fatigue on static and dynamic balance in young women. Thirty women who were used to wearing high heels volunteered to participate in this study. The shoe heel heights were 0 ㎝ and 7 ㎝. And ankle plantar flexor fatigue was experimentally induced. Static and dynamic balance were measured using the one leg standing test (OLST) and the star excursion balance test (SEBT) in anterior, posteromedial, and posterolateral directions, respectively. Values in the OLST (shoe heel height 0 ㎝, 28.83±3.24 sec to 26.12±6.13 sec; and 7 ㎝, 24.75±7.09 sec to 16.86±9.32 sec) and the SEBT in anterior (shoe heel height 0 ㎝, 71.02±4.57% to 69.50±3.66%; and 7 ㎝, 64.17±3.53% to 59.61±4.06%) and posteromedial (shoe heel height 0 ㎝, 92.01±5.61% to 90.38±7.10%; and 7 ㎝, 83.09±7.29% to 76.83±9.28%) directions were significantly reduced when fatigue-inducing exercise was performed (p<.05). Furthermore, within these parameters, there were significant interaction effects between shoe heel height and fatigue condition (p<.05). These findings suggest that shoe heel height and muscle fatigue contribute to some changes in static and dynamic balance in young women, probably leading to negative effects on physical function during a variety of activities of daily living.
목적 : Tetrax(Tetrax Portable Multiple System)를 이용하여 맨발, 운동화, 킬힐의 착용에 따라 균형능력에 차이가 있는지를 알아보고자 한다.
연구방법 : 본 연구는 2010년 8월 31일~9월 7일 D대학에 재학 중이고, 연구참여에 동의한 여학생 20명을 대상으로 평가를 실시하였다. 균형평가는 Tetrax를 통해 시각과 체성 감각의 유무, 머리의 좌우와 앞뒤의 변화를 요구하는 8개의 자세에서 검사를 시행하였고, 맨발, 운동화, 킬힐은 무작위 선정하여 시행하였다.
결과 : 킬힐을 착용했을 때 안정성 지수(Stability index)가 맨발 또는 운동화 착용보다 높았고, 체중 분포 지수(Weight distribution index)는 정상치 범위보다 낮았으며, 낙상 지수(Fall index)는 위험범위에 속하였다.
결론 : 킬힐을 착용했을 때 맨발이나 운동화보다 자세불안정으로 인하여 낙상 위험이 높은 것으로 나타났다.
The purpose of this study is to measure the effect of change in heel height on lower extremities activity of young women on high-heeled shoes that young women prefer from more kinetic and realistic perspective as this study changes the degree of slope on a treadmill. The study subjects are 15 young and healthy women who do not have any external injuries or problem with walking and understand the purpose of this study clearly. They wore three different height of heels(1cm, 7cm, 12cm) and walked on a treadmill at a constant speed of 3km/h. EMG value of four muscles (anterior tibial muscle, gastrocnemius muscle, straight muscle of thigh, and biceps muscle of thigh) were collected when walking and the change according to the height of heels were analyzed using one-way ANOVA. Multiple comparison analysis on anterior tibial muscle and heel height showed that the group with 12cm heel showed significantly high muscle activation compared to the groups with 1cm and 7cm heels. The result of this study can be used for various perspectives from inferring and mediating problems caused by wearing high heels on different ground slopes for a long time
This study aimed to investigate the effect of differing heel heights on the electromyographic (EMG) activity in vastus medialis (VM) and vastus lateralis (VL) during stair ascending and descending activities. A total of 26 healthy women volunteered to perform stair-ascending and stair-descending tasks with 3 heel heights: barefoot, 3 cm, and 7 cm. The EMG activities of the VM and VL were recorded during the tasks. During the stair ascending and descending tasks, the EMG activities of both VM and VL significantly changed with differing the heel heights (p<.05). Moreover, the EMG activities of VM and VL during the stair ascending task were significantly higher than the corresponding values during the stair-descending task (p<.05). However, there were no significant differences between the VM:VL EMG ratios for the 3 heel heights (p>.05). The VM:VL EMG ratios between the 2 tasks differed significantly in the 7 cm high heel condition (p<.05). Despite an increase in the EMG activities in both VM and VL during stair ascending and descending tasks, there was no change in the relative EMG intensities of VM and VL, which was measured by calculating the VM:VL ratio this result indicates that no VM:VL imbalances were elicited. The relative EMG intensities of VM and VL during stair descent were lower than the corresponding values during the ascent, suggesting that VM and VL may show an imbalance in the eccentric activation during the weight-acceptance phase. This study provides useful information that will facilitate future research on how heel height affects muscle activity around the knee joint.
The purpose of this study was to assess the peak plantar pressure distribution under foot areas according to the height of heel lifts in obese adults and non-obese adults during walking. Thirty-one participants volunteered for this experiment. The average body mass index (BMI) value of the fourteen subjects in the obese group was 26.5±1.4 ㎏/㎡ (from 25.1 to 29.3 ㎏/㎡), and of seventeen subjects in the non-obese group was 20.0±1.1 ㎏/㎡ (from 18.7 to 22.7 ㎏/㎡). The subject ambulated while walking in the sneakers, walking with 2 cm heel lifts, and walking with 4 cm heel lifts in the shoes. We measured the peak plantar pressure under the hallux, 1st, 2nd, 3~4th, and 5th metatarsal head (MTH), mi foot, and heel using F-scan system. The obese group had significantly higher peak plantar pressure under all foot areas than the non-obese group regardless of the height of heel lifts (p<.05). The peak plantar pressure under the 5th MTH and heel was significantly decreased, also the peak plantar pressure under hallux, 1st, and 2nd MTH was significantly increased according to the height of heel lifts in the obese group and non-obese group (p<.05), We proposed that individuals with heel lifts in shoes should be careful, as there is high plantar pressure under the forefoot.
In today's society, many women wear high-heeled shoes, but the effect of heel height on lumbar lordosis has not been clearly defined. The objective of this study was to identify the influence of heel height and general characteristics of subjects on lumbar lordosis. The subjects of this study were 40 healthy women who were students of the Department of Physical Therapy, College of Rehabilitation Science, Taegu University. Flexible ruler measurement was used to measure the lumbar lordosis at barefoot, 3 cm and 7 cm high-heeled standing positions. The results were as follows: 1) Significant statistical decrease in lumbar lordosis was observed as heel heights were increased from barefoot to 7 cm high heel. 2) There were no statistically significant differences between lumbar lordosis according to three different heel heights and weight, body mass index. 3) Lumbar lordosis measured at different heel heights was related to subject's height. With increasing subject's height, lumbar lordosis that measured from each heel height was significantly decreased. As heel heights were increased from barefoot to 7 cm high heel, significant statistical decrease in lumbar lordosis was observed in the subjects whose height were 151~160 cm. 4) Intrarater reliability on lumbar lordosis taken with a flexible ruler was good, with Cronbach values of 0.8971 for barefoot, 0.8107 for 3 cm and 0.9002 for 7 cm high-heeled standing positions.
This study was conducted to identify the effects of high-heel shoes on EMG activities of rectus femoris and biceps femoris in 28 healthy women. Subjects were composed of experimental group (wearing high-heel shoes) and control group (wearing low-heel shoes). Two groups participated in three conditions standing (bare foot wearing athletic shoes and 7.5 cm height shoes). In high-heel shoes condition, EMG activities of rectus femoris of control group were significantly lower than that of biceps femoris of experimental group, but EMG activities of both muscles of experimental group did not should significant difference. In bare foot standing condition, EMG activities of rectus femoris of experimental group were significantly lower than that of biceps femoris but EMG activities of both muscles of control group had no significant difference. These results showed that hamstring lengthening effects was produced when wearing high-heel shoes because the external knee extension moment was increased. In the short term, high-heel shoes effect on the increase of the biceps femoris activities by spindle reflex, but in the long term, the normal amplitude of the same muscle activities by Golgi tendon organ reflex.
선박사고는 환경적인 요인으로 인해 경사가 항상 존재한다. 선박의 경사는 선내 재실자의 피난 이동속도뿐만 아니라 선내 화재성 장에도 영향을 미치기 때문에 화재해석 시 경사조건을 고려하여 위험분석을 할 필요가 있다. 이에 이 연구에서는 FLUENT를 이용하여 선박의 횡경사와 종경사 변화에 따라 산정된 온도결과 값에 의해 화재에 미치는 영향을 분석하였다. 화원의 위치를 기준으로 횡경사가 –10°일 때 37초, 종경사는 –10°일 때 36초 이내에 피난을 해야 하는 반면, 횡경사가 +10°, 종경사가 +10°인 경우 피난에 영향을 미치지 않을 것으로 예측되었다. 이와 같은 결과를 바탕으로, 선박화재 시 화재발생위치를 기준으로 횡경사와 종경사를 고려하여 피난유도 및 대책을 마련해야함을 확인하였다.
본 연구는 X-선관 각도 변경에 따른 경사효과(Anode Heel Effect)의 변화를 알아보고자 실시하였다. 실험조건은 70 kV, 30 mAs, 초점-검출기간의 거리 100 cm, 조사야는 35×43 ㎠, 측정점은 조사야의 정중앙점에서 좌우 3.5 cm 간격으로 나누어 양극쪽으로 A1, A2, A3, A4, A5, A6 점을 설정하고 음극쪽으로 C1, C2, C3, C4, C5, C6 점으로 설정하였다. X-선관을 수직으로 하여 측정점인 A6에서 C6까지 각각 입사표면선량을 측정하였다. 다음에 X-선관을 양극쪽으로 15도 30도로 변경 하면서 각각 측정하고 같은 방법으로 음극쪽으로 15도 30도로 변화시켜 측정하였다. 결과로 X-선관이 수직인 경우 A5보다 C5점이 3배정도 입사표면선량이 높게 나타나 수직 촬영 시 방사선감수성이 높은 장기가 위치해 있는 쪽으로 양극을 위치시키면 피폭을 줄일 수 있었다. X-선관의 각도를 주고 촬영할 경우에는 음극측으로 각도를 주는 것이 양극과 음극측의 입사표면선량 차이를 줄일 수 있으며 상, 하 두께 차이가 있는 부위를 촬영할 경우에는 음극측이 두꺼운 부위를 향하게 각도를 주는 것이 입사표면선량의 차이를 줄여 좀 더 균일한 영상을 만들 수 있었다.
본 연구의 목표는 신발 굽 높이에 따른 Kager씨 삼각 면적의 방사선영상 변화와 후종족부의 표면온도 변화를 알아보고자 연구하였다. 카이거씨 면적은 단순 방사선촬영검사와 인피니티 영상저장전송시스템을 이용하여 측정 하였다.후종족부의 표면온도는 전산화적외선체열검사를 이용하여 측정하였다. 운동화 착용 대상자에게 신발 굽 높이가 다른하이힐을 착용시켜 카이거씨 삼각 면적과 후종족부의 표면온도 차이를 분석 하였다. 하이힐 대상자들은 운동화 대상자들에 비하여 카이거씨 삼각 면적이 0.88cm², 후종족부의 표면온도가 1.4℃ 각각 감소하였다. 최고신장과 최저신장의 카이거씨 면적과 표면온도의 차이는 운동화와 하이힐에서 각각 0.9cm²,1.2cm²,1.6℃,0.5℃이며 모두 미세한 차이를 나타냈다. 최고체중과 최저체중의 카이거씨 면적과 표면온도의 차이는 운동화와 하이힐에서 각각 1.8cm²,0.8cm²,1.1℃,0.2℃이며 체중이 높을수록 카이거씨 면적과 표면온도가 감소하였다. 하이힐 최장시간 착용자와 최저시간 착용자의 카이거씨 면적과 표면온도의 차이는 각각 0.8cm², 1.4℃, 이며 착용시간이 증가함에 따라 카이거씨 면적과 표면온도가 감소하였다. 결론적으로 하이힐을 장시간 착용하면 후종족부 통증과 혈류 장애를 유발 할 것으로 고려된다.