The gingival epithelium of the oral cavity is constantly exposed to exogenous stimuli such as bacterial toxins, allergens, and thermal changes. These exogenous stimuli are resisted by innate host defense in gingival epithelial cells. However, it is unclear exactly how the exogenous stimuli affect detrimentally on the human gingival epithelial cells. Here, we investigated whether the allergen, such as house dust mite (HDM) extract, is linked to Ca2+ signaling and proinflammatory cytokine expression in primary cultured human gingival epithelial cells. HDM extract induced an increase in intracellular Ca2+ concentration ([Ca2+]i) in a dose-dependent manner. Extracellular Ca2+ depletion did not affected on the HDM extract-induced increase in [Ca2+]i. The HDM extractinduced increase in [Ca2+]i was abolished by the treatment with U73122 and 2-APB, which are inhibitors of phospholipase C (PLC) and inositol 1,4,5-trisphosphate (IP3) receptor. Moreover, HDM extract induced the mRNA expression of pro-inflammatory cytokine, interleukin (IL)-8. These results suggest that HDM extract triggers PLC/IP3-dependent Ca2+ signaling and IL-8 mRNA expression in primary cultured human gingival epithelial cells.
This study was carried out to assess the improvement of treatment by the house-plant. For the purpose of this study, 17 asthma-patients residing in Seoul were selected as participants during January to March 2007. We measured VOCs and conducted clinical survey during April to September 2007. In this study, 6 species of houseplants known to be eco-friendly were investigated for the health effect along with 12 other plants. The research focused on peak expiratory flow rate(PEFR) and disease specific quality of life. When the results were compared to the non-intervention households, the intervention households had reduced levels of acetaldehyde, benzene, ethylbenzene, xylene and styrene. The reduction rate estimated from this comparative study was statistically significant(p<0.05). There was however no association between the intervention and the estimated PEFR between morning and evening data in asthma-patients.
This research was conducted to investigate the influence of various organic substrates on growth and yield of ginseng seedling grown organically in the closed plastic house. The pH and EC of substrates used for organically ginseng cultivation ranged 5.93~6.78 and 0.03~0.15 dS/m respectively. The concentrations NH4-N and NO3-N respectively was 14.01~68.63 mg/L, 5.60~58.83 mg/L. The average quantum of the closed plastic house was range from 10 to 16% of natural light. In July and August, the maximum temperature of the closed plastic house did not exceed 30 and the average temperature was maintained within 25 lower than the field because air conditioning ran. The PPV-1 and PPV-2 bed soil substrates produced higher stem length, stem diameter, shoot fresh weight and leaf area than those of conventional culture. In PPV-2 bed soil substrates, root fresh weight and root diameter was the highest. The root fresh weight of PPV-2 bed soil substrates in closed plastic house was maximum 25% heavier than the conventional cultivation. The results of this experiment will be utilized for making new substrate application for organic ginseng culture in the plastic house.