검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 170

        1.
        2024.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study investigated the operating principles of colorimetric freshness indicators, particularly those for relative humidity (RH) and hydrogen sulfide (H2S), and evaluated the applicability of commercially available indicators for food use. The findings not only provide a deeper understanding of how these indicators respond to substances, such as carbon dioxide, volatile basic nitrogen, sulfides, water activity, and ethylene gas, which are produced during quality changes in food, but also pave the way for the development of new food safety technologies. The RH indicator functions by utilizing a dye that undergoes a chemical structural change when reacting with moisture. The H2S indicator uses a dye that changes color upon detecting H2S or volatile basic nitrogen produced when food spoils. Commercial RH indicators effectively indicated changes in the water activity of almonds, pastries, and red pepper powder; however, their ability to predict them diminished during storage. Commercial H2S indicators exhibited a stronger correlation between color change and volatile basic nitrogen levels in exposure to light than without light, as demonstrated when applied to mackerel and clam. Additionally, at the point of spoilage, the degree of color change in the H2S indicators was more distinct in clam than mackerel. Although commercial RH and H2S indicators are available, they must be sensitive, accurate, and irreversibly developed in response to changes in the target food for effective application.
        4,000원
        2.
        2024.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, laser-induced graphene oxide (LIGO) was synthesized through a facile liquid-based process involving the introduction of deionized (DI) water onto polyimide (PI) film and subsequent direct laser irradiation using a CO2 laser (λ = 10.6 μm). The synthesized LIGO was then evaluated as a sensing material for monitoring changes in humidity levels. The synthesis conditions were optimized by precisely controlling the laser scribing speed, leading to the synthesis of LIGO with different structural characteristics and varying oxygen contents. The increased number of oxygen-containing functional groups contributed to the hydrophilic properties of LIGO, resulting in a superior humidity sensing capabilities compared with laser-induced graphene (LIG). The LIGO-based sensors outperformed LIG-based sensors, demonstrating approximately tenfold higher sensing responsivity when detecting changes at each humidity level, along with 1.25 to 1.75 times faster response/recovery times, making LIGO-based sensors more promising for humidity-monitoring applications. This study demonstrated laser ablation in a renewable and natural precursor as an eco-friendly and energy-efficient approach to directly synthesize LIGO with controllable oxidation levels.
        4,500원
        3.
        2024.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Development of carbon-based biocompatible and flexible nanosensors is essential in different practical applications. Humidity sensor is crucial in different fields among them. Herein, a unique metal-free nanosensor comprised of 2D-graphitic carbon nitride (CN) decorated with 0D-carbon dots (C-dots) was fabricated to monitor humidity in human breath. Simple polymerization and carbonization techniques were used to synthesize nitrogen enriched heterostructure (CN@C-dots). The synthesized heterostructure showed excellent physicochemical properties including high surface area, hydrophilic functionalities and more active sites that were responsible for enhanced humidity sensing. The fabricated nanosensor indicated excellent resistivity against humidity due to diffused proton hoping through inhibition of ion transfer from multiple water layers. The interaction mechanism was explained through simple hydrogen bonding and defective site chemisorbed oxygen participation in physisorbed humidity molecules.
        4,500원
        4.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the performances of H2S, NH3, and HCl sensors for real-time monitoring in small emission facilities (4, 5 grades in Korea) were evaluated at high concentration conditions of those gases. And the proper approach for the collection of reliable measurement data by sensors was suggested through finding out the effect on sensor performances according to changes in temperature and humidity (relative humidity, RH) settings. In addition, an assessment on sensor data correction considering the effects produced by environmental settings was conducted. The effects were tested in four different conditions of temperature and humidity. The sensor performances (reproducibility, precision, lower detection limit (LDL), and linearity) were good for all three sensors. The intercept (ADC0) values for all three sensors were good for the changes of temperature and humidity conditions. The variation in the slope value of the NH3 sensor showed the highest value, and this was followed by the HCl, H2S sensors. The results of this study can be helpful for data collection by enabling the more reliable and precise measurements of concentrations measured by sensors.
        4,000원
        5.
        2023.10 구독 인증기관·개인회원 무료
        Spodoptera species (S. exigua and S. litura) are important pests of several crops and vegetables in Korea. We investigated development processes of Spodoptera species under constant temperatures (20, 25 and 30 oC) regimes and relative humidity (RH) (30-35, 50-55, 70-75, and 90-95%) conditions. We collected eggs of Spodoptera species by releasing them into a rectangular box inner walls covered with a sheet of white paper. Temperature and RH significantly impacted on oviposition, immature survival, adult emergence and longevity of Spodoptera species. Maximum number of eggs, shorter developmental time, higher adult emergence with longer longevity were reported in 70-75% at 30 oC. Minimal eggs and larval survival were recorded in 30-35% and 90-95% RH, respectively. This results suggest that temperature and RH had individual apparent effect on the developmental processes of Spodoptera species instead interactive effect. Therefore, there is chance to cause a significant damage to field crops and vegetables in 70-75% at 30 oC.
        6.
        2023.10 구독 인증기관·개인회원 무료
        Feltiella acarisuga(Vallot) is a common gall midge that feeds on many species of spider mites. The effect of temperature and humidity on the development of F. acarisuga female were determined using eggs of the twos potted spider mite, Tetranychus urticae(Koch), as prey under laboratory condition (27.9±0.5℃, 90% RH, and 14:10 [L:D] h). F. acarisuga female laid the most eggs on the 5th day after mating, and the acumulative fecundity reached it speak on the 13th day. The sex ratio of F. acarisuga was 6:4, male to female. The average number of eggs per day during life was 2.7 but during the egg-laying period was 3.1. The female’s lifespan was about 3.5 days longer than that of the male in the adult stage but 6.2 days longer including the egg and larval period. The temperature did not affect the female survival and fecundity, but as humidity was lowered, the female’s survival period washortened and fecundity decreased. When using F. acarisuga as natural enemies, the optimal temperature rage was 20 to 30℃ and the relative humidity was 80 to 95%.
        7.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        이 논문에서는 내구성이 우수한 것으로 알려져 있는 펄트루젼 FRP의 습도 노출 및 동결 융해 영향을 검토하고, 이에 따른 국부좌굴강도 영향을 검토하기 위한 해석적 연구를 수행하였다. FRP는 일반적으로 내구성이 우수하다고 알려져 있기 때문 에, 해양 구조물 등 습윤환경에서 적용하기 위한 다양한 연구가 진행되고 있으며, 특히 구조용 부재로 제작되는 펄트루젼 FRP 부재는 하절기와 동절기의 온도변화에 노출되기 때문에 이에 대한 검토가 필요하다. 펄트루젼 FRP의 습도 노출 및 동결 융해 영향은 기존 연구의 실험 결과를 참고하였으며, 국부좌굴강도는 정밀해법을 통해 영향을 검토하였다. 검토 결과 펄트루젼 FRP 는 습도노출 및 동결융해의 영향으로 인해 최대 약 20%의 인장강도 및 탄성계수 변화를 나타내었으나, 국부좌굴강도는 약 3% 로 그 영향이 상대적으로 작은 것으로 나타났다. 따라서, 온도이력 및 습윤환경에서도 펄트루젼 FRP는 국부좌굴강도의 큰 변화 를 나타내지 않고 높은 내구성을 나타낼 수 있을 것으로 판단된다.
        4,000원
        9.
        2023.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Determination of explosion reference pressure is important in designing and testing flameproof enclosures (Ex d). Although relative humidity affects to explosion pressure, its effect is not well investigated for the gas group IIB, IIA, and I. This study tested explosion pressure for Ethylene (8 vol.%), Propane (4.6 vol.%), and Methane (9.8 vol.%), which are the representative gas of the gas group IIB, IIA, and I, at ambient temperature and atmospheric pressure (1 atm) under different relative humidity (0% ~ 80%). Ethylene- and Propane-air mixed gases generally tended to decrease as the relative humidity increased; however, explosion pressure was largely dropped at 20% of relative humidity compared to 0% and 10% of relative humidity. On the other hand, Methane-air mixture gas showed similar pressures at 0% and 10% of relative humidity; but no explosion occurred at more than 20%. The results of this study can be used in setting a testing protocol of explosion reference pressure for designing and testing a flameproof enclosure.
        4,000원
        10.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Low-cost particulate matter (PM) sensors based on the light scattering principle measure the concentration of particles by the change of scattering intensity after light is irradiated onto the particles. It has been reported that when the relative humidity is high, water vapor may cause the expansion of airborne particles and affect the accuracy of the light scattering method for PM measurement, but it has also been shown that the effect of humidity is not significant or even negligible. Therefore, to determine the effect of humidity on the Plantower PMS7003 light scattering sensor, in this study, a BAM1020 (Beta Attenuation Monitoring) was installed alongside to continuously monitor the ambient atmospheric PM concentration for approximately four weeks. The sensors collected data at 10-minute intervals, resulting in a 1-hour average for comparative analysis. To accurately measure humidity, the performance of the Arduino + DHT22 humidity sensor was also pre-evaluated using a series of saturated salt solutions. The humidity was grouped into five intervals and analyzed by visual analysis. The results confirmed that there was no significant correlation between PM2.5 differences and humidity, which were randomly and uniformly distributed around the mean. However, since in the very low and high concentration ranges based on the beta-ray monitor measurements, the difference between the light scattering sensor PM10 measurement and the reference value is much larger than the difference between the PM2.5 and the reference value., there is an additional need to investigate the appropriate correction method for dust season or PM10. The results show that the outcomes of the light scattering sensor are more influenced by particle size and concentration than by humidity.
        4,200원
        11.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        To test a flameproof enclosure for the safety certificate, a reference pressure of explosion needs to be determined. However, the explosion pressure may be changed according to relative humidity of explosive gases. Therefore, the guideline on relative humidity should be recommended for measuring the explosion pressure for accurate and reproducible testings. This study examined the relationship of explosion pressure with relative humidity of hydrogen (31 vol %)-air and acetylene (14 vol %)-air mixture gases. The explosion pressures were measured by increasing the relative humidity of the gases by 10 % from dry state to 80 % in a cylindrical explosion enclosure of 2.3 L. on ambient temperature and atmospheric pressure (1 atm). The maximum explosive pressures were remained almost constant until the relative humidity reached 10 % for the hydrogen-air mixture and 20 % for the acetylene-air mixture. However, the maximum explosive pressures linearly decreased as the relative humidity increased. Based on the results of the study, it would be recommended to use 10 % relative humidity for the hydrogen-air mixture and 20 % for the acetylene-air mixture as the critical value in testing a flameproof enclosure.
        4,000원
        12.
        2022.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study was performed to investigate the effects of water molecules on ozone oxidation of acetaldehyde using a manganese oxide catalyst at room temperature. The catalytic ozone oxidation was conducted at different relative humidity (RH) conditions of 0%, 50%, and 80%. As the RH increased, both ozone and acetaldehyde removal efficiencies dropped due to competitive adsorption on the surface of the catalyst. At the highest RH of 80%, the oxidation reaction was severely retarded, and oxidation by-products such as acetic acid were formed and adsorbed on the surface. After the ozone oxidation of acetaldehyde, the regeneration of the catalyst using ozone alone was tested, and the further oxidation of accumulated organic compounds was investigated under the RH conditions of 0%, 50%, and 80%. When the highest relative humidity was introduced in the regeneration step, the ozonation reaction with the by-products adsorbed on the catalyst surface decreased due to the competitive reaction with water molecules. These findings revealed that, only when relative humidity was low to minimize the formation of by-products, the ozone oxidation of acetaldehyde using the manganese oxide catalyst at room temperature can be feasible as an effective control method.
        4,000원
        13.
        2022.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study measured the suspended fungal concentration in indoor multiple facilities nationwide. The regions were selected as representative cities by region: Seoul, Gyeonggi (Incheon), Gangwon, Gwangju, Daejeon, and Busan. A total of 2028 regional comparisons, including department stores, schools, public toilets, libraries, and banks, subway, sports facilities and comparative analysis were conducted for each multi-use facility industry. Among the nationwide, Among the regions, the average concentration of floating mold in indoor multi-use facilities was the lowest in Busan at 394.67 CFU/m3, followed by Gyeonggi and Incheon 487.90 CFU/m3, Seoul 542.84 CFU/m3, Daejeon 809.30 CFU/m3, Gangwon 1,145.22 CFU/m3, Gwangju was 1,371.10 CFU/m3 in the order. Busan was the lowest, and Gangwon was the highest. The reason that Busan, which has a high average temperature and population density, shows a lower mold concentration than Gangwon, is that floating mold in the indoor air is not affected by the external atmospheric environment, population density, and number of facility users. Although it cannot be said that there is no influence of the atmospheric environment, it was found that the indoor environment has different characteristics from the outdoor environment. The importance of air quality management has been confirmed, and further, it is necessary to subdivide the management standards by region and multi-use facilities, and the management standards need to be converted to maintenance rather than recommendations.
        4,200원
        14.
        2022.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        해저 파이프라인 예비커미셔닝(Pre-commissioning) 단계는 입수(Flooding), 배수(Venting), 하이드로테스팅(Hydrotesting), 탈수 (Dewatering), 건조(Drying), 질소충진(N2 Purging)의 공정과정으로 구성된다. 이 중 건조와 질소충진 과정은 운용 중 파이프라인 내부에 하이 드레이트(Hydrate)의 발생과 가스 폭발의 위험을 방지하기 위해 상대습도를 이슬점 아래로 감소 및 유지되도록 규정되어 있다. 본 연구의 목적은 해저 파이프라인 예비커미셔닝 중, 공기건조(Air Drying)와 질소충진 공정과정에 대한 해석법을 개발하고 현장계측 결과와의 상호 비교를 통해 해석법의 활용가능성을 평가하는 데 있다. 해저 파이프라인 내부 상대습도 평가를 위한 방법으로 전산열유체(CFD)를 활용한 해석기법을 도입·적용하였고 해양공사 해저 파이프라인 공기건조와 질소충진 공정과정에 대한 현장계측 결과와 잘 일치함을 확인하였다. 개발된 공기건조와 질소충진 해석법 및 평가방법을 향후 해저 파이프라인 예비커미셔닝 작업의 사전 엔지니어링 도구로 활용할 경우, 작 업생산성 향상에 크게 기여할 것으로 사료된다.
        4,000원
        15.
        2022.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 다양한 상대습도(11~93%) 조건에서 해조류의 미생물 안정성 및 품질특성에 미치는 영향을 조사하였다. 미생물 안정성은 저장 중 대장균군, 일반세균, 효모 및 곰팡이수를 분석하였다. 일반세균은 상대습도 69~93%에서 4.40~7.00 log CFU/g, 효모 및 곰팡이는 4.20~6.40 log CFU/g로 상대습도 69%이상 조건에서 일반세균, 효모 및 곰팡이의 수가 급격하게 증가하였다. 고결현상은 상대습도 11~53% 조건에서는 일어나지 않았으나 69, 81, 93% 조건에서는 각각 86.9, 99.45, 99.98%로 높은 고결현상을 가지는 것으로 나타났다. 색도는 상대습도가 높아질수록 L값과 b값이 감소하였고, a값이 증가하여 갈변현상이 일어났다. 또한, 총 페놀함량(9.10~8.66 mg GAE/100 g dw), ABTS 소거능(24.20~24.18 mg AAE/100 g dw), FRAP(15.34~15.33 mg Fe(II)/100 g dw)활성은 저장 중 상대습도 11~33%에서 가장 높게 유지되었다. 그러나, 상대습도 43~93%에서 저장 중 총 페놀함량(8.66~4.00 mg GAE/100 g dw), ABTS(22.57~4.50 mg AAE/100 g dw), FRAP(13.06~4.00 mg AAE/100 g dw)활성이 감소하는 것으로 나타났다. 상대습도 81% 조건에서 ABTS 및 FRAP이 1/3배로 감소하였고, 93% 조건에서 총 페놀함량, ABTS 및 FRAP이 각각 1/2배, 1/5배, 1/3배로 감소하였다. 따라서, 일반세균, 효모 및 곰팡이의 성장 억제, 고결현상 방지, 갈변억제, 높은 총 페놀함량과 항산화활성 유지를 위해서는 상대습도 53% 이하의 조건에서 보관하는 것이 미생물 안정성 및 품질특성 유지에 효과적일 것으로 판단된다.
        4,000원
        16.
        2022.01 KCI 등재 구독 인증기관 무료, 개인회원 유료
        연구는 참외 재배 지에서 흰가루병, 담배가루이 및 두점박이응애가 동시에 발생하였을 때 45, 40, 35°C (대조구)의 온도에서 측창으로 환기 처리 시, 온실 내 온 ․ 습도의 변화, 병충해 발생과 잎말림, 그리고 개화조절에 미 치는 효과를 검토하였다. 3월 3일 ‘히든파워’ 대목에 접붙여진 ‘알찬꿀’ 참외를 40cm 간격으로 격리상에 심었고, 위 에 언급한 병해충이 모든 처리구에서 발생한 6월 18일부터 7월 13일까지 처리하였다. 온실의 온도는 맑은 날에는 설정 온도 지점까지 증가되었고, 45°C 환기 처리에서 고온 고습이 약 9시간 동안 유지되었다. 주간 최고 기온과 최 저 상대습도 차이는 45°C 환기 처리에서 가장 높았다. 환기 처리 11일 후에는 흰가루병과 두점박이응애 피해가 45°C 환기 처리에서 거의 회복되었지만 40°C와 35°C에서는 그렇지 않았다. 처리 14일 후, 담배가루이와 두점박이 응애 밀도는 45°C에서 유의하게 감소하였으나 흰가루병 증상은 유의하게 감소하지는 않았다. 잎말림은 고온에서 유발되었으나 45°C에서도 심하지 않았다. 처리 26일 후, 새로 나온 줄기의 15 마디의 개화수를 조사한 결과, 45°C에 서 암꽃이 전혀 나오지 않았고 수꽃은 1.2개로 나타났다. 이상의 결과는, 고온기에 45°C의 고온에서 2-3주간 환기 처리는 온실 내부의 고온 고습을 유도하여 흰가루병, 담배가루이, 두점박이응애를 통제하고, 개화를 억제하여 참외 의 영양 생장을 회복할 수 있는 방법으로 사료되었다.
        4,000원
        17.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The purpose of this study is to analyze the effect of temperature and humidity on the measured Particulate Matter (PM) concentrations recorded by PMS5003T, a low-cost light scattering type measuring tool. A regression analysis was performed on the ratio of PM concentrations measured by the light scattering method and the beta-ray absorption method according to temperature and humidity in an outdoor environment. As the temperature decreased, the PM concentration ratio increased, and this tendency intensified below 0oC. As the humidity increased, the PM concentration ratio increased, but the effect was less than the temperature effect. The coefficients of determination for temperature and humidity were R2 = 0.325 and 0.003, respectively, and the effects of temperature and humidity on the measured values w ere formulated and compensated for. As a result of the compensation, R2, relative precision, accuracy and RMSE improved from 0.927 to 0.958, from 91.183% to 96.651%, from 31.383% to 74.058%, and from 13.517 μg/m³ to 6.690 μg/m³, respectively. Finally, results from this study indicate that the reliability of the low-cost light scattering type PM sensor can be improved by applying the temperature and humidity compensation method.
        4,000원
        18.
        2021.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 저장 온도를 달리하여 높은 상대습도의 환경에서 건조 감자를 저장하였을 때 발생하는 품질변화를 관찰하였다. 저장기간 및 건조온도가 증가함에 따라 L* value 는 감소하였고, a* 및 b* value는 증가하는 경향을 나타내었다. 수분활성도는 높은 습도 조건으로 인해 10일차부터 급격히 증가하였으며, 환원형 비타민 C 함량은 급격히 감소하는 경향을 나타내었다. pH 값은 저장기간 동안 완만하게 감소하였으며 40oC에서 저장했을 때 큰 폭으로 감소하였다. 저장기간 동안 대장균군은 검출되지 않았으며, 일반 세균 수는 저장 온도가 증가함에 따라 많이 검출되었다. 전체적으로 20oC와 30oC에서 저장한 시료 간의 차이는 크지 않았으나, 40oC에서 저장한 시료의 경우 큰 품질변화를 나타내었고, 밀봉된 상태로 저장한 대조구의 경우 품질변화가 적게 나타나는 것을 확인할 수 있었다. 따라서 본 연구결과를 종합해 볼 때, 밀봉하여 산소와 수분을 차단한 상태로 저장하는 것이 제품 고유의 특성을 유지하는데 가장 효과적이며, 높은 습도의 환경일 경우 낮은 온도로 저장하는 것이 품질 변화를 지연시키는데 도움이 될 것으로 판단된다.
        4,000원
        1 2 3 4 5