본 연구는 외부 환경 조건에 따른 줄눈 콘크리트 포장의 상·하부 상대습도 차이를 분석하기 위해 실험 데이터를 활용 한 유한요소해석을 수행하였다. 실험은 300mm × 260mm × 2000mm 크기의 콘크리트 시편을 대상으로 진행되었으며, Strain gauge를 이용해 상·하부 변형률을 측정하고, LVDT 센서를 통해 상단부 연직 변위를 기록하였다. 항온항습기를 이용해 온도를 25°C로 유지한 상태에서 상대습도를 65%, 35%, 35% + 풍속(약 4 m/s)의 세 가지 조건으로 설정하여 실 험을 진행하였다. 구조해석은 ABAQUS를 이용하여 수행하였으며, 하부 상대습도를 100%로 고정한 상태에서 상부 상대습도를 도출하는 방법을 적용하였다. 직접적인 상대습도 도출 시 곡률을 일정하다고 가정해야 하는 문제가 발생하여, 응력해석을 기반으 로 등가선형온도차(ΔT)를 적용하는 방식을 채택하였다. ABAQUS에서 깊이 260mm에 대해 선형 ΔT 값을 부여하여 열 변형을 유도하고, 이를 실험값과 비교하여 조정한 후 최종적으로 ΔT 값을 상대습도로 변환하였다. 그 결과, 시간에 따른 상부 상대습도의 변화를 도출할 수 있었으며, 외부 환경 조건(습도 및 풍속)에 따른 상대습도 변화 경향을 확인하였다. 본 연구 결과는 향후 수분 확산 해석 연구 및 국내 환경을 반영한 JCP 상대습도 변화 모델 개발에 기초 자료로 활용될 것으로 기대된다.
최근 몇 년 동안 높은 감도, 빠른 응답 및 쉬운 제작 공정을 갖춘 습도 센서가 상당한 주목을 받고 있다. 여기서는 PET 기판의 깍지낀 전극(IDE)에 감지 층을 증착하여 길이 대 직경의 종횡비가 낮고 (PVP-ZnO-1), 높은(PVP-ZnO-2) PVP 개질 ZnO 나노막대 센서(PVP-ZnO)의 쉬운 제작 공정을 보고 한다. PVP-ZnO-2는 PVP-ZnO-1 센서(41,647%)에 비해 85% 상대 습도(RH)에서 99,397%의 더 높은 정전용량성 습도 감도를 보였다. PVP-ZnO-2 센서는 또한 순환 습도 조건에서 응답시간 7초 및 복구시간 10초를 나타냈다. PVP-ZnO-2의 높은 습도 감도 성능의 이점을 활용하여 다양한 호흡 정도의 정전용량 변화와 모스 부호 메시징을 시연하였다. 이 연구는 높은 표면적을 갖는 고성능 나노소재 기반 습도 센서의 엄청난 잠재력을 보여준다.
본 연구는 54일 동안 관수량과 오이(‘아시아 은천 F1’)의 생 육, 줄기 수액 흐름, 광합성 특성, 수분 이용 효율에 대한 상대 습도(RH)와 광도의 영향을 평가하였다. 오이는 토양 화분에 서 재배되었으며, 토양 수분 장력계로 자동 제어(-10kPa) 하 여 EC 1.5dS m-1의 양액을 1회 주당(per plant) 265mL 공급하 였다. 처리는 세 조건으로 광도 200μmol·m-2·s-1에 가습 처리 구(HL)와 무가습의 대조구(Control), 광도 350μmol·m-2·s-1 에 가습 처리구(HH)로 설정하였다. 주간(weekly) 평균 RH는 가습 처리구에서 79.5%(VPD 2.4kPa), 무가습 처리구에서 65.5%(VPD 4.0kPa)이었고, 평균 온도는 모든 처리구에서 25℃이었다. 총관수 횟수는 대조구에서 29회, HL처리구에 서 26회, HH처리구에서 27회이었다. HH처리구에서 초장과 마디 수, 엽 생육, 줄기 직경에서 생장이 컸으며, HH처리구에 서 광합성률이 더 높았고, 대조구에서 증산률이 더 높았다. 주 간 엽온은 HH처리구에서 28℃, HL처리구에서 26℃, 대조구 가 23℃였으며, 엽기온차는 HH처리구에서 2℃, HL처리구 에서 0℃, 대조구에서 -3℃ 이였다. 모든 처리구에서 줄기 수액흐름(SFRR)은 광의 유무와 토양수분장력에 영향을 받 아 광주기 시작 전 10%(HH, Control)-30%(HL)에서 광주 기 시작 이후 60%(HH)-90%(Control)로 상승하였고, 관수 후 SFRR은 20-30% 상승폭을 나타냈다. 광 조사 동안 평균 SFRR은 대조구에서 88.5%로 가습처리구보다 높은 경향이 었다. 이상의 결과 오이 토양 포트재배에서 토양수분장력 -10kPa 관수제어시 처리구의 토양 수분장력은 차이가 없음 에도 불구하고 적정 VPD가 유지되면 오이의 생육과 암꽃발 생률이 높았고 광주기 동안 엽기온차, 관수영향은 SFRR에 영 향을 주었다.
This study investigated the operating principles of colorimetric freshness indicators, particularly those for relative humidity (RH) and hydrogen sulfide (H2S), and evaluated the applicability of commercially available indicators for food use. The findings not only provide a deeper understanding of how these indicators respond to substances, such as carbon dioxide, volatile basic nitrogen, sulfides, water activity, and ethylene gas, which are produced during quality changes in food, but also pave the way for the development of new food safety technologies. The RH indicator functions by utilizing a dye that undergoes a chemical structural change when reacting with moisture. The H2S indicator uses a dye that changes color upon detecting H2S or volatile basic nitrogen produced when food spoils. Commercial RH indicators effectively indicated changes in the water activity of almonds, pastries, and red pepper powder; however, their ability to predict them diminished during storage. Commercial H2S indicators exhibited a stronger correlation between color change and volatile basic nitrogen levels in exposure to light than without light, as demonstrated when applied to mackerel and clam. Additionally, at the point of spoilage, the degree of color change in the H2S indicators was more distinct in clam than mackerel. Although commercial RH and H2S indicators are available, they must be sensitive, accurate, and irreversibly developed in response to changes in the target food for effective application.
In this study, laser-induced graphene oxide (LIGO) was synthesized through a facile liquid-based process involving the introduction of deionized (DI) water onto polyimide (PI) film and subsequent direct laser irradiation using a CO2 laser (λ = 10.6 μm). The synthesized LIGO was then evaluated as a sensing material for monitoring changes in humidity levels. The synthesis conditions were optimized by precisely controlling the laser scribing speed, leading to the synthesis of LIGO with different structural characteristics and varying oxygen contents. The increased number of oxygen-containing functional groups contributed to the hydrophilic properties of LIGO, resulting in a superior humidity sensing capabilities compared with laser-induced graphene (LIG). The LIGO-based sensors outperformed LIG-based sensors, demonstrating approximately tenfold higher sensing responsivity when detecting changes at each humidity level, along with 1.25 to 1.75 times faster response/recovery times, making LIGO-based sensors more promising for humidity-monitoring applications. This study demonstrated laser ablation in a renewable and natural precursor as an eco-friendly and energy-efficient approach to directly synthesize LIGO with controllable oxidation levels.
Development of carbon-based biocompatible and flexible nanosensors is essential in different practical applications. Humidity sensor is crucial in different fields among them. Herein, a unique metal-free nanosensor comprised of 2D-graphitic carbon nitride (CN) decorated with 0D-carbon dots (C-dots) was fabricated to monitor humidity in human breath. Simple polymerization and carbonization techniques were used to synthesize nitrogen enriched heterostructure (CN@C-dots). The synthesized heterostructure showed excellent physicochemical properties including high surface area, hydrophilic functionalities and more active sites that were responsible for enhanced humidity sensing. The fabricated nanosensor indicated excellent resistivity against humidity due to diffused proton hoping through inhibition of ion transfer from multiple water layers. The interaction mechanism was explained through simple hydrogen bonding and defective site chemisorbed oxygen participation in physisorbed humidity molecules.
In this study, the performances of H2S, NH3, and HCl sensors for real-time monitoring in small emission facilities (4, 5 grades in Korea) were evaluated at high concentration conditions of those gases. And the proper approach for the collection of reliable measurement data by sensors was suggested through finding out the effect on sensor performances according to changes in temperature and humidity (relative humidity, RH) settings. In addition, an assessment on sensor data correction considering the effects produced by environmental settings was conducted. The effects were tested in four different conditions of temperature and humidity. The sensor performances (reproducibility, precision, lower detection limit (LDL), and linearity) were good for all three sensors. The intercept (ADC0) values for all three sensors were good for the changes of temperature and humidity conditions. The variation in the slope value of the NH3 sensor showed the highest value, and this was followed by the HCl, H2S sensors. The results of this study can be helpful for data collection by enabling the more reliable and precise measurements of concentrations measured by sensors.
Spodoptera species (S. exigua and S. litura) are important pests of several crops and vegetables in Korea. We investigated development processes of Spodoptera species under constant temperatures (20, 25 and 30 oC) regimes and relative humidity (RH) (30-35, 50-55, 70-75, and 90-95%) conditions. We collected eggs of Spodoptera species by releasing them into a rectangular box inner walls covered with a sheet of white paper. Temperature and RH significantly impacted on oviposition, immature survival, adult emergence and longevity of Spodoptera species. Maximum number of eggs, shorter developmental time, higher adult emergence with longer longevity were reported in 70-75% at 30 oC. Minimal eggs and larval survival were recorded in 30-35% and 90-95% RH, respectively. This results suggest that temperature and RH had individual apparent effect on the developmental processes of Spodoptera species instead interactive effect. Therefore, there is chance to cause a significant damage to field crops and vegetables in 70-75% at 30 oC.
Feltiella acarisuga(Vallot) is a common gall midge that feeds on many species of spider mites. The effect of temperature and humidity on the development of F. acarisuga female were determined using eggs of the twos potted spider mite, Tetranychus urticae(Koch), as prey under laboratory condition (27.9±0.5℃, 90% RH, and 14:10 [L:D] h). F. acarisuga female laid the most eggs on the 5th day after mating, and the acumulative fecundity reached it speak on the 13th day. The sex ratio of F. acarisuga was 6:4, male to female. The average number of eggs per day during life was 2.7 but during the egg-laying period was 3.1. The female’s lifespan was about 3.5 days longer than that of the male in the adult stage but 6.2 days longer including the egg and larval period. The temperature did not affect the female survival and fecundity, but as humidity was lowered, the female’s survival period washortened and fecundity decreased. When using F. acarisuga as natural enemies, the optimal temperature rage was 20 to 30℃ and the relative humidity was 80 to 95%.
이 논문에서는 내구성이 우수한 것으로 알려져 있는 펄트루젼 FRP의 습도 노출 및 동결 융해 영향을 검토하고, 이에 따른 국부좌굴강도 영향을 검토하기 위한 해석적 연구를 수행하였다. FRP는 일반적으로 내구성이 우수하다고 알려져 있기 때문 에, 해양 구조물 등 습윤환경에서 적용하기 위한 다양한 연구가 진행되고 있으며, 특히 구조용 부재로 제작되는 펄트루젼 FRP 부재는 하절기와 동절기의 온도변화에 노출되기 때문에 이에 대한 검토가 필요하다. 펄트루젼 FRP의 습도 노출 및 동결 융해 영향은 기존 연구의 실험 결과를 참고하였으며, 국부좌굴강도는 정밀해법을 통해 영향을 검토하였다. 검토 결과 펄트루젼 FRP 는 습도노출 및 동결융해의 영향으로 인해 최대 약 20%의 인장강도 및 탄성계수 변화를 나타내었으나, 국부좌굴강도는 약 3% 로 그 영향이 상대적으로 작은 것으로 나타났다. 따라서, 온도이력 및 습윤환경에서도 펄트루젼 FRP는 국부좌굴강도의 큰 변화 를 나타내지 않고 높은 내구성을 나타낼 수 있을 것으로 판단된다.
Determination of explosion reference pressure is important in designing and testing flameproof enclosures (Ex d). Although relative humidity affects to explosion pressure, its effect is not well investigated for the gas group IIB, IIA, and I. This study tested explosion pressure for Ethylene (8 vol.%), Propane (4.6 vol.%), and Methane (9.8 vol.%), which are the representative gas of the gas group IIB, IIA, and I, at ambient temperature and atmospheric pressure (1 atm) under different relative humidity (0% ~ 80%). Ethylene- and Propane-air mixed gases generally tended to decrease as the relative humidity increased; however, explosion pressure was largely dropped at 20% of relative humidity compared to 0% and 10% of relative humidity. On the other hand, Methane-air mixture gas showed similar pressures at 0% and 10% of relative humidity; but no explosion occurred at more than 20%. The results of this study can be used in setting a testing protocol of explosion reference pressure for designing and testing a flameproof enclosure.
Low-cost particulate matter (PM) sensors based on the light scattering principle measure the concentration of particles by the change of scattering intensity after light is irradiated onto the particles. It has been reported that when the relative humidity is high, water vapor may cause the expansion of airborne particles and affect the accuracy of the light scattering method for PM measurement, but it has also been shown that the effect of humidity is not significant or even negligible. Therefore, to determine the effect of humidity on the Plantower PMS7003 light scattering sensor, in this study, a BAM1020 (Beta Attenuation Monitoring) was installed alongside to continuously monitor the ambient atmospheric PM concentration for approximately four weeks. The sensors collected data at 10-minute intervals, resulting in a 1-hour average for comparative analysis. To accurately measure humidity, the performance of the Arduino + DHT22 humidity sensor was also pre-evaluated using a series of saturated salt solutions. The humidity was grouped into five intervals and analyzed by visual analysis. The results confirmed that there was no significant correlation between PM2.5 differences and humidity, which were randomly and uniformly distributed around the mean. However, since in the very low and high concentration ranges based on the beta-ray monitor measurements, the difference between the light scattering sensor PM10 measurement and the reference value is much larger than the difference between the PM2.5 and the reference value., there is an additional need to investigate the appropriate correction method for dust season or PM10. The results show that the outcomes of the light scattering sensor are more influenced by particle size and concentration than by humidity.
To test a flameproof enclosure for the safety certificate, a reference pressure of explosion needs to be determined. However, the explosion pressure may be changed according to relative humidity of explosive gases. Therefore, the guideline on relative humidity should be recommended for measuring the explosion pressure for accurate and reproducible testings. This study examined the relationship of explosion pressure with relative humidity of hydrogen (31 vol %)-air and acetylene (14 vol %)-air mixture gases. The explosion pressures were measured by increasing the relative humidity of the gases by 10 % from dry state to 80 % in a cylindrical explosion enclosure of 2.3 L. on ambient temperature and atmospheric pressure (1 atm). The maximum explosive pressures were remained almost constant until the relative humidity reached 10 % for the hydrogen-air mixture and 20 % for the acetylene-air mixture. However, the maximum explosive pressures linearly decreased as the relative humidity increased. Based on the results of the study, it would be recommended to use 10 % relative humidity for the hydrogen-air mixture and 20 % for the acetylene-air mixture as the critical value in testing a flameproof enclosure.
This study was performed to investigate the effects of water molecules on ozone oxidation of acetaldehyde using a manganese oxide catalyst at room temperature. The catalytic ozone oxidation was conducted at different relative humidity (RH) conditions of 0%, 50%, and 80%. As the RH increased, both ozone and acetaldehyde removal efficiencies dropped due to competitive adsorption on the surface of the catalyst. At the highest RH of 80%, the oxidation reaction was severely retarded, and oxidation by-products such as acetic acid were formed and adsorbed on the surface. After the ozone oxidation of acetaldehyde, the regeneration of the catalyst using ozone alone was tested, and the further oxidation of accumulated organic compounds was investigated under the RH conditions of 0%, 50%, and 80%. When the highest relative humidity was introduced in the regeneration step, the ozonation reaction with the by-products adsorbed on the catalyst surface decreased due to the competitive reaction with water molecules. These findings revealed that, only when relative humidity was low to minimize the formation of by-products, the ozone oxidation of acetaldehyde using the manganese oxide catalyst at room temperature can be feasible as an effective control method.
This study measured the suspended fungal concentration in indoor multiple facilities nationwide. The regions were selected as representative cities by region: Seoul, Gyeonggi (Incheon), Gangwon, Gwangju, Daejeon, and Busan. A total of 2028 regional comparisons, including department stores, schools, public toilets, libraries, and banks, subway, sports facilities and comparative analysis were conducted for each multi-use facility industry. Among the nationwide, Among the regions, the average concentration of floating mold in indoor multi-use facilities was the lowest in Busan at 394.67 CFU/m3, followed by Gyeonggi and Incheon 487.90 CFU/m3, Seoul 542.84 CFU/m3, Daejeon 809.30 CFU/m3, Gangwon 1,145.22 CFU/m3, Gwangju was 1,371.10 CFU/m3 in the order. Busan was the lowest, and Gangwon was the highest. The reason that Busan, which has a high average temperature and population density, shows a lower mold concentration than Gangwon, is that floating mold in the indoor air is not affected by the external atmospheric environment, population density, and number of facility users. Although it cannot be said that there is no influence of the atmospheric environment, it was found that the indoor environment has different characteristics from the outdoor environment. The importance of air quality management has been confirmed, and further, it is necessary to subdivide the management standards by region and multi-use facilities, and the management standards need to be converted to maintenance rather than recommendations.
해저 파이프라인 예비커미셔닝(Pre-commissioning) 단계는 입수(Flooding), 배수(Venting), 하이드로테스팅(Hydrotesting), 탈수 (Dewatering), 건조(Drying), 질소충진(N2 Purging)의 공정과정으로 구성된다. 이 중 건조와 질소충진 과정은 운용 중 파이프라인 내부에 하이 드레이트(Hydrate)의 발생과 가스 폭발의 위험을 방지하기 위해 상대습도를 이슬점 아래로 감소 및 유지되도록 규정되어 있다. 본 연구의 목적은 해저 파이프라인 예비커미셔닝 중, 공기건조(Air Drying)와 질소충진 공정과정에 대한 해석법을 개발하고 현장계측 결과와의 상호 비교를 통해 해석법의 활용가능성을 평가하는 데 있다. 해저 파이프라인 내부 상대습도 평가를 위한 방법으로 전산열유체(CFD)를 활용한 해석기법을 도입·적용하였고 해양공사 해저 파이프라인 공기건조와 질소충진 공정과정에 대한 현장계측 결과와 잘 일치함을 확인하였다. 개발된 공기건조와 질소충진 해석법 및 평가방법을 향후 해저 파이프라인 예비커미셔닝 작업의 사전 엔지니어링 도구로 활용할 경우, 작 업생산성 향상에 크게 기여할 것으로 사료된다.