In this study used Computational Fluid Dynamic analysis to examine NOx reduction in hydrogen combustion, analyzing six conditions with varying air/fuel ratios, temperatures, and concentrations. Results were compared between two combustor shapes and previous experimental data. Findings showed increased air/fuel ratios decreased flame temperature and increased post-combustion O2. NOx emissions peaked at high temperatures and low O2. Numerical results aligned with previous experimental trends, validating the approach. Combustor shape differences, reflecting variations in fuel and air pipes, significantly affected flow rates and combustion positions. This reduced NOx emissions up to a certain air/fuel ratio, but excessive increases diminished this effect. The study highlights the complex relationship between combustor design, operating conditions, and NOx emissions. Further research is needed to optimize NOx reduction by considering pipe numbers and combustion locations. Future studies should explore various combustor geometries, fine-tune air/fuel ratios, and investigate additional parameters influencing NOx formation and reduction in hydrogen combustion systems.
The hydrogen valve used in this study is intended to be applied to a automobile, and since there is a limit to the length of the stem, it is necessary to review the optimized stem, and for this, it is required to investigate the heat transfer characteristics of the hydrogen shut-off valve. For this, the temperature of the entire shut-off valve and especially the plunger and O-ring, which are key components in the solenoid valve driving the hydrogen shut-off valve, was calculated using the ANSYS-CFX flow analysis program. From the analysis results, the length of the stem capable of maintaining the design temperature of -40℃ or higher should be at least 139 mm, and it is judged that it should be 140 mm or more considering safety. When determining the stem length of the hydrogen blocking valve for automobiles, constraints on installation in automobiles should be considered.
The recent surge in energy consumption has sharply increased the use of fossil fuels, leading to a steep rise in the concentration of greenhouse gases in the atmosphere. Interest in hydrogen is growing to mitigate the issue of global warming. Currently, hydrogen energy is transported in the form of high-pressure gaseous hydrogen, which has the disadvantages of low safety and energy efficiency. To develop commercial hydrogen vehicles, liquid hydrogen should be utilized. Liquid hydrogen storage tanks have supports between the inner and outer cylinders to bear the weight of the cylinders and the liquid hydrogen. However, research on the design to improve the structural safety of these supports is still insufficient. In this study, through a thermal-structural coupled analysis of liquid hydrogen storage tanks, the model with three supports, which had the lowest maximum effective stress in the outer tank, inner tank, and supports as proposed in the author's previous research, was used to create analysis models based on the diameter of the supports. A structurally safe design for the supports was proposed.
In this study, flow analysis was performed using ANSYS CFX to evaluate the performance of the 30kg hydrogen fuel cell hexa-copter drone in hovering flight. In the case of a hydrogen fuel cell hexa-copter drone, a total of four cooling fans are mounted on the drone's body in two pairs on the left and right to cool the fuel cell module. In order to evaluate the effect of the air flow from the cooling fan on the aerodynamic properties of the hydrogen fuel cell drone as the mounted cooling fan operates, the change in thrust for the case where the cooling fan operates and does not operate was compared and analyzed. Looking at the analysis results, it was found that the presence or absence of the drone's cooling fan had little effect on the drone's thrust through the thrust results for the six wings.
이 실험에서는 α-Al2O3 지지체 위에 진공 코팅(vacuum coating)과 딥 코팅(dip-coating) 기법을 사용하여 GO/γ -Al2O3 중간층을 형성하였고, 무전해도금 방식을 통해 Pd-Ag 수소 분리막을 제작하였다. Pd와 Ag는 각각 무전해도금을 통해 지지체 표면에 증착되었으며, 합금화를 위해 도금 과정 중 H2 분위기 하에서 500°C에서 18 h 동안 열처리를 진행하였다. 제 조된 분리막의 표면과 단면은 SEM을 통해 분석되었으며, Pd-Ag 분리막의 두께는 1.88 μm, GO/γ-Al2O3 중간층을 가진 Pd-Ag 분리막의 두께는 1.07 μm로 측정되었다. EDS 분석을 통해 Pd-77%, Ag-23%의 조성으로 합금이 형성된 것을 확인하 였다. 기체투과 실험은 H2 단일가스와 H2/N2 혼합가스를 이용하여 수행되었다. H2 단일가스 투과실험에서 450°C, 4 bar 조건 하에서 Pd 분리막의 최대 H2 플럭스는 0.53 mol/m²·s로, Pd-Ag 분리막의 경우 0.76 mol/m²·s로 측정되었다. H2/N2 혼합가스 실험에서 측정된 분리막의 separation factor는 450°C, 4 bar 조건에서 Pd 분리막이 2626, Pd-Ag 분리막이 13808로 나타났다.
In this study, numerical analysis was performed on a type IV hydrogen storage tank to analyze the temperature change of hydrogen inside the tank and the filling performance by changing the inlet nozzle outlet angle and the number of outlets. Considering the residual state of charge (SOC) inside the initial tank, the initial pressure was 10 MPa, and the temperature of hydrogen inside the tank and the SOC results were analyzed when hydrogen with a temperature of 233 K was introduced under the conditions of liner, wrap, and outside temperature of 298 K. The results of the analysis showed that the charging completion rate reached the charging limit pressure. The analysis showed that time of filling completion, when the filling limit pressure is reached, the SOC result is about 94% for all geometry change conditions, and the filling completion time increases by 5s as the number of outlets decreases. The temperature change of the wrap area at the end of filling is up to 3.6K, which shows that the outside air temperature has a negligible effect on the hydrogen temperature change inside the tank.
The government declared ‘2050 carbon neutrality’ as a national vision in October 2020 and subsequently pursued the establishment of a ‘2050 carbon neutrality scenario’ as a follow-up response. Hydrogen is considered as one of the most promising future energy carriers due to its noteworthy advantages of renewable, environmentally friendly and high calorific value. Liquid hydrogen is thus more advantageous for large-scale storage and transportation. However, due to the large difference between the liquid hydrogen temperature and the environment temperature, an inevitable heat leak into the storage tanks of liquid hydrogen occurs, causing boil-off losses and vent of hydrogen gas. Researches on insulation materials for liquid hydrogen are actively being conducted, but research on support design for minimal heat transfer and enhanced rigidity remains insufficient. In this study, to design support structures for liquid hydrogen storage tanks, a thermal-structural coupled analysis technique was developed using Ansys Workbench. Analytical models were created based on the number and arrangement of supports to propose structurally safe support designs.
Hydrogen is considered as one of the most promising future energy carriers due to its noteworthy advantages of renewable, environmentally friendly and high calorific value. However, the low density of hydrogen makes its storage an urgent technical problem for hydrogen energy development. Compared with the density of gas hydrogen, the density of liquid hydrogen is more than 1.5 times higher. Liquid hydrogen is thus more advantageous for large-scale storage and transportation. However, due to the large difference between the liquid hydrogen temperature and the environment temperature, an inevitable heat leak into the storage tanks of liquid hydrogen occurs, causing boil-off losses and vent of hydrogen gas. Researches on insulation materials for liquid hydrogen are actively being conducted, but research on support design for minimal heat transfer and enhanced rigidity remains insufficient. In this study, to design support for liquid hydrogen storage tank, technique of thermal-structural coupled analysis including geometry, mesh, and boundary condition were developed using Ansys workbench, and equivalent stress and deformation distributions were analyzed.
The PCHE(Printed Circuit Heat Exchanger)-type heat exchanger, which was fabricated by etching and diffusion bonding, was used to hydrogen station, VHTR(Very High Temperature Reactor), SMR and so on. The hydrogen station equipped with PCHE-type heat exchanger is necessary to inject the hydrogen gas into facilities, for instance, such as HFCV(Hydrogen Fuel Cell Vehicle) and power systems. The purpose of this study is to investigate the thermal characteristics of thin plate of PCHE depending on constraint conditions through numerical analysis. As the results, it showed that thermal stress of thin plate, which was not performed diffusion bonding at all, was larger than that, which was performed perfect diffusion bonding, and its maximum difference was about 3 times. Further it was confirmed that the thermal characteristics of thin plate could be obtained by investigating the heat flux.
수소는 연소 과정에서 산소와 반응하여 물과 열만을 생성하며 공해 물질이 배출하지 않아 깨끗한 에너지원으로 간주된다. 이러한 특징으로 산업 활동으로 비롯된 대기 오염, 이상 기후 문제 등을 해결 하기 위한 대책안으로써 수소를 활용한 신재생에너지가 세계적으로 주목받고 있다. 이에 따라 선행 연 구에서는 수직형 탱크 구조의 취약부로 평가되는 지지부 단면 변화에 따른 영향성을 평가하기 위해 수소 생산 인프라 현장 조사를 수행한 바 있으며, 현장 조사 중에 현장 설치된 수소 탱크 강재 지지부 의 부식 문제를 확인하였다. 지지부의 부식은 구조물의 전체 강성을 감소시키며, 재난(지진)에 취약해 져 수소 저장 용기가 손상으로 인한 2차 피해로 이어질 수 있다. 이에 따라 본 연구는 선행 연구의 후속 연구로써 강재 지지부의 부식 문제를 개선하고자 고강도-저중량 재료인 CFRP(Carbon Fiber Reinforced Polymer)를 사용한 지지부를 개발하여 수치해석을 통해 CFRP 지지부의 내진 성능평가를 목적으로 한다. 해석에 사용된 수소 탱크는 크게 몸체, 지지부, 기초부, 앵커 볼트로 구성되어 있으며, 지지부는 높이 965mm, 75×75×9.5mm의 L형강 4개로 확인되었다. 지진 하중에 대한 동적 성능을 평가하기 위해 시간이력해석법이 사용되었으며, 적용 동적하중의 경우, ASCE의 ICC-ES에서 제시한 평가 기준에 따라 AC 156 Amplitude 100%의 인공 지진을 적용하였다. 해석 결과, CFRP 지지부와 강재 지지부 상단의 최대 변위가 각각 35.48, 32.54mm로 매우 유사한 것으로 나타났으며, Hashin Damage Criteria를 사용하여 CFRP 지지부의 최대 손상 지수를 측정한 결과 수지의 인장측에서 0.065로 확인되었다. 이는 기준 손상 지수 1 대비 매우 낮은 수준이며, 해석 결과를 종합했을 때 CFRP 지지부는 충분한 안전성을 보이는 것으로 판단된다.
본 연구에서는 수소 자원의 활용도가 높아짐에 따라 수소 저장 용기의 내진 성능을 평가하기 위해 수소 저장 시설을 방문하여 현장 조사를 수행하였다. 외관 조사 중, 수조 저장 용기의 지지부에서 부식이 진행됨을 확인하였고, 이에 대한 대책안 으로 내부식성 재료인 CFRP로 대체하여 성능을 평가, 검증하였다. 이를 위해 현장 조사 결과를 바탕으로 상용 유한요소해석 프 로그램인 ABAQUS를 사용하였으며, 해석 결과 CFRP로 제작된 수소 저장 용기의 지지부는 강재 대비 약 12배 이상 뛰어난 성 능을 보였다. Hashin Damage Criteria를 기반으로 CFRP 지지부의 안전성 검토를 수행한 결과 최대 손상 지수가 0.065로 확인되 었다. 기초부 콘크리트의 경우, 쪼갬 및 휨 인장 응력에 대한 안전성을 검토하였으며, 허용 강도 대비 7~36%의 안전도를 보였 다. 이를 근거로 CFRP를 수소 저장 용기의 지지부에 적용하는 것은 합리적이며, 뛰어난 경제성을 보인다. 다만, 이러한 결과는 수치 해석에 의하므로 실규모 지진동 모사 시험을 통해 해석 모델의 신뢰성을 보충할 필요가 있다.
In this study, a numerical analysis study was conducted on the flow characteristics according to the internal flow path change and differential pressure of the hydrogen shut-off valve, and through this, the pressure loss characteristics and flow coefficient of the hydrogen shut-off valve were predicted. ANSYS CFX program was used to predict the flow characteristics of the hydrogen shut-off valve. When the flow path gap was 1.3 mm, the design conditions of the hydrogen shut-off valve were satisfied, and the value of the flow coefficient of the valve was about 1.53. As the inlet pressure of the hydrogen shut-off valve increases, the outlet flow rate increases, but regardless of the inlet pressure, the flow coefficient of the valve is almost constant, ranging from 1.53 to 1.56, indicating that it is the inherent flow coefficient of the designed hydrogen shut-off valve.
Decarbonization plays an important role in future energy systems for establishing a zero-carbon society. Hydrogen is believed to be a promising energy source that can be converted, stored, and utilized efficiently, leading to a broad range of possibilities for future applications. Hydrogen can be stored in various forms, including compressed gas, liquid hydrogen, hydrides, adsorbed hydrogen. Among these, liquid hydrogen has high gravimetric and volumetric hydrogen densities. There are a lot of previous studies on thermal behavior of MLI and VCS and optimization insulation system, but research on the insulation performance by varying the head shape of the tank has not been conducted. In this study, thermal-structural coupled analysis was conducted on the insulation system with VCS positioned between two layers of MLI for a liquid hydrogen storage tank. The analysis considered dome shapes (torispherical, circle, ellipses), and heat flux and temperature were derived from thermal analysis to predict insulation performance. Maximum equivalent stress and deformation were calculated from the structural analysis, and the optimal dome shape was proposed.
In this study, numerical analysis was performed for the purpose of analyzing the flow characteristics and performance according to the change in the inflow hydrogen temperature and differential pressure of the receptacle of the hydrogen charging system. The pressure distribution and turbulent kinetic energy in the filter area were analyzed by changing the outlet pressure condition under the inlet hydrogen temperature condition, and the flow velocity change at the outlet was compared and analyzed. As a result of the analysis, as the differential pressure decreased, the flow rate at the outlet of the receptacle decreased by up to about 70% at the 2.86 MPa condition compared to the 1.86 MPa condition, and the mass flow rate decreased by about 56.5% at the maximum. It was found that the standard CV performance was not satisfied when the differential pressure at the inlet and outlet was 1.12 MPa or less under the 363K temperature condition.
Hydrogen is considered as one of the most promising future energy carriers due to its noteworthy advantages of renewable and high calorific value. The long-term storage of liquid hydrogen with low heat leakage is essential for future deep space exploration. Because of low critical temperature and volatility, liquid hydrogen tank poses severe requirements to multi-layer insulation (MLI). In order to reduce heat leak into tank, vapor cooled shield (VCS) was set up to cool MLI by retrieving the heat of discharged cryogenic gas hydrogen. This paper presents an parametric study on insulation system in liquid hydrogen storage vessel with MLI and VCS. Thermal model was developed, and heat transfer analysis by varying VCS position was conducted. Temperature and heat flux distributions along time passing were derived, and effect of VCS position on insulation performance was investigated.
To test a flameproof enclosure for the safety certificate, a reference pressure of explosion needs to be determined. However, the explosion pressure may be changed according to relative humidity of explosive gases. Therefore, the guideline on relative humidity should be recommended for measuring the explosion pressure for accurate and reproducible testings. This study examined the relationship of explosion pressure with relative humidity of hydrogen (31 vol %)-air and acetylene (14 vol %)-air mixture gases. The explosion pressures were measured by increasing the relative humidity of the gases by 10 % from dry state to 80 % in a cylindrical explosion enclosure of 2.3 L. on ambient temperature and atmospheric pressure (1 atm). The maximum explosive pressures were remained almost constant until the relative humidity reached 10 % for the hydrogen-air mixture and 20 % for the acetylene-air mixture. However, the maximum explosive pressures linearly decreased as the relative humidity increased. Based on the results of the study, it would be recommended to use 10 % relative humidity for the hydrogen-air mixture and 20 % for the acetylene-air mixture as the critical value in testing a flameproof enclosure.