The deep geologic repository (DGR) concept is widely accepted as the most feasible option for the final disposal of spent nuclear fuels. In this concept, a series of engineered and natural barrier systems are combined to safely store spent nuclear fuel and to isolate it from the biosphere for a practically indefinite period of time. Due to the extremely long lifetime of the DGR, the performance of the DGR replies especially on the natural geologic barriers. Assessing the safety of the DGR is thus required to evaluate the impacts of a wide range of geological, hydrogeological, and physicochemical processes including rare geological events as well as present water cycles and deep groundwater flow systems. Due to the time scale and the complexity of the physicochemical processes and geologic media involved, the numerical models used for safety evaluation need to be comprehensive, robust, and efficient. This study describes the development of an accessible, transparent, and extensible integrated hydrologic models (IHM) which can be approved with confidence by the regulators as well as scientific community and thus suitable for current and future safety assessment of the DGR systems. The IHM under development can currently simulate overland flow, groundwater flow, near surface evapotranspiration in a modular manner. The IHM can also be considered as a framework as it can easily accommodate additional processes and requirements for the future as it is necessary. The IHM is capable of handling the atmospheric, land surface, and subsurface processes for simultaneously analyzing the regional groundwater driving force and deep subsurface flow, and repository scale safety features, providing an ultimate basis for seamless safety assessment in the DGR program. The applicability of the IHM to the DGR safety assessment is demonstrated using illustrative examples.
The widely accepted recognition of global environmental problems has resulted in a paradigm shift for research in the hydrosciences. Hydrologic model has played important roles in hydroscience and engineering. However, there are some limitations to deal with real world problems. In this paper, comprehensive review on the current status and major issues on hydrologic models. The sources of model uncertainty were classified and discussed. Finally, model calibration and verification issues were discussed in view of Popperian perspective.
This study is to examine how well the hydrologic model reproduces the dam collapse. To do this, A hydrologic model FLO-2D is being operated to reproduce dam collapse with rainfall data and surface data in a small dam. In order to examine the performance of the model, the simulation was compared and reviewed with the data collected through the field survey. The results show that it takes about 2 hours to reach 1 km downstream. Inundation areas are about 188,640 m2 by the simulation and the difference from the field investigation is about 6.1%. Ten representative points were selected from the areas where the simulation and the field survey did not match. The discrepancy is less than about 0.08 m and does not appear to be significant. This study will present basic information on disaster preparedness operation and planning to minimize damage caused by sudden collapse of agricultural soil dams in the future.
Soil water enters the atmosphere via evapotranspiration, where it transforms into atmospheric water vapor and plays important role in the surface-atmosphere energy exchange. Soil conditions have a direct influence on the effective rainfall, and initial soil moisture conditions are important for quantitatively evaluating the effective rainfall in a watershed. To examine the sensitivity of the initial saturation to hydrologic outflow, a two-dimensional distributed FLO-2D hydrologic model was applied to a small watershed. The initial saturation was set to 0.3, 0.5, and 0.7 and the obtained results were compared. The Green-ampt model was chosen to calculate the penetration loss. Depending on the initial soil moisture, the peak flow rate varied by up to 60%, and the total water volume in the watershed by approximately 40%.
댐 위험도 해석시 수문학적 변량(강수, 유출 및 수위)들의 상호관계를 고려한 체계적인 분석과정이 요구된다. 그러나 기존 댐 위험도 해석 연구에서는 변량간의 체계적인 관계 평가를 수행하는데 있어서 한계점을 나타내고 있다. 이러한 점에서, 본 연구에서는 수리·수문학적 변량간의 관계를 효과적으로 평가하고자 Bayesian Network 기반의 댐 위험도 해석 기법을 개발하였다. 실제 댐에 대해서 제안된 모형을 적용한 결과 파괴인자간의 상호관계 규명 및 불확실성을 평가하는데 있어서 기존 연구보다 쉽게 가장 큰 파괴인자를 파악할 수 있는 장점이 있었다. 이와 더불어 다양한 시나리오에 따른 댐의 안정성을 파괴확률 및 예상피해의 함수인 위험도로 평가할 수 있도록 하였다. 즉, 기존 댐 위험도 기법으로 수행한 결과에서는 월류 확률이 도출 되지 않았지만, Copula 함수를 도입하여 댐 초기수위를 고려한 결과 댐 월류 확률이 발생하였 으며, 피해결과 역시 크게 증가하고 있는 것을 확인할 수 있었다. 이러한 결과를 기반으로 향후 댐의 보수보강 등의 우선순위 결정을 위한 도구로서 활용이 가능할 것으로 판단된다.
기상레이더의 관측 특성상, 지형클러터 등의 관측영역 한계로 인한 관측공백 지역이 발생한다. 이러한 레이더 빔의 차폐는 강우량의 과소추정 원인이 된다. 이를 해결하기 위해 본 연구에서는 Hybrid Scan Reflectivity(HSR) 기법을 개발하고 기존 방법 결과와 비교하였다. 결과에 의하면, 기존 레이더 관측방법으로 지형에 의해 반사도 정보를 얻지 못하는 영역에 대하여 HSR 기법이 레이더 강우량을 추정할 수 있음을 확인하였다. 반사도 스캔기법과 빔차폐/비 빔차폐영역에서 모두 HSR 기법을 적용한 결과가 정확성이 가장 뛰어났다. 다음으로 각 방법별 레이더 추정 강우량을 HEC-HMS에 적용하여 홍수 유출량 추정 정확성을 평가하였다. HSR 기법에 의한 유출량은 RAR 산출 시스템과 M-P 관계식 대비 상관계수는 평균 7%와 10%, Nash-Sutcliffe Efficiency는 평균 18%와 34% 향상되었다. 따라서 정확한 홍수량 추정을 위해 수문분야에 HSR 기법에 의해 추정된 강우량을 활용할 필요성이 있는 것으로 사료된다.
수문학적 댐 위험도 분석은 복잡한 수문분석과 연계되어 있으며, 기본적으로 수문분석 과정과 모형에 사용되는 입력 자료에 대한 불확실성을 평가하는 과정이 필요하다. 그러나 체계적인 불확실성 분석 과정을 통한 댐 위험도 분석 절차에 대한 연구는 상대적으로 적은편이다. 이러한 점에서 본 연구에서는 기존 연구에 대해서 2가지 주요 개선점을 도출하여 댐 위험도 분석에 활용하였다. 첫째, 강우 분석 시 매개변수의 불확실성 분석이 가능한 Bayesian 모형 기반의 지역빈도해석 절차를 수립하였다. 둘째, 강우-유출 모형 매개변수의 사후분포를 정량적으로 추정하기 위하여 Bayesian 모형과 연계한 HEC-1모형을 도입하였다. 도출된 유입 시나리오를 댐의 수위로 환산하기 위하여 기존 저수지 운영기준에 근거하여 저수지 추적을 수행하였으며, 최종적으로 실행함수를 통하여 수문학적 위험도를 추정하였다. 실제 댐에 대해서 모형의 적합성을 평가하였으며, 초기수위 가정에 따른 수문학적 위험도에 민감도를 평가하였다.
본 연구에서는 범용 매개변수 최적화 모형인 PEST를 이용하여 분포형 수문모형인 GRM(grid based rainfall-runoff model) 모형의매개변수및불확실성범위를추정하였다. 특히, 레이더강우및지상관측강우를각각적용하여, 입력자료 차이가매개변수추정에미치는영향을분석하였다. 자동보정모형은GUI (graphic user interface)에대한접근없이모형구동이가능하도록개선된GRM-MP (multiple projects) 버전과병렬PEST버전을결합하여매개변수추정에소요되는시간을단축시켰다. 이를낙동강수계금호강유역과감천유역에대해적용하여, 초기포화도, 지표면조도계수및토양투수계수의보정계수에 대해 매개변수 최적화 및 불확실성 추정을 수행하였다. 강우자료 분석 결과, 레이더와 지상 강우의 유역평균누적시계열은비슷하거나지상강우가조금큰경향을보였으나, 공간분포에있어서는지상강우에비해레이더강우에서큰 변동성이 확인되었다. 보정된 수문모의 결과는 레이더 강우 적용 시, 지상 강우에 비해 비슷하거나 더 나은 정확도를보였다. 추정된매개변수는레이더강우적용시, 토양투수계수의보정계수가일관되게1보다작은경향을보였으며, 이는강우강도가 강한 격자가 상당수 존재하기 때문으로 판단되었다. 초기 포화도 및 지표면 조도계수의 보정계수는 레이더및 지상 강우에서 일정한 경향성을 보이지 않았다. 본 연구의 대상 유역 및 호우사상에 대한 PEST의 최적화 모의 결과,동일유역및호우사상에대해서도강우추정방법에따라서로다른최적매개변수값을갖는것을알수있었으며, 이는향후 레이더 강우 자료의 수문 모의 활용 시 유의해야할 점으로 판단된다.
본 연구의 목적은 앙상블 칼만필터링 기법과 연속형 강우-유출모형을 연계한 SURF 모형과 Auto ROM을 결합한 실시간 댐 수문량 예측모형(DHVPM)을 개발하고 그 적용성을 평가하는데 있다. 대상유역은 충주댐 상류유역을 선정하였으며 2006∼2009년 동안 연최대 유입량이 발생한 4개 사례를 선정하였다. 관측유량 자료동화 적용에 따른 선행시간 1시간 유입량에 대한 첨두유량 상대오차, 평균제곱근오차, 모형효율성계수를 산정한 결과, 2007년 첨두유량 상대오차 결과를 제외한 모든 사례에서 자료동화기법을 적용한 결과가 우수한 것으로 나타났다. 현시점으로 가정한 가상시점에서 예측선행시간 10시간에 대해 유입량을 예측한 결과에서, 유역평균강우량의 오차가 큰 경우에 대해 자료동화기법을 적용함으로써 예측 유입량의 오차가 줄어드는 것을 확인하였다. 이상의 결과로부터 실시간 예측유입량의 정확도를 향상시키기 위해서는 관측유입량의 실시간 활용이 가능한 환경에서 자료동화기법을 연계한 유입량 예측모형을 이용하는 것이 바람직할 것으로 판단된다.
본 연구의 목적은 도시개발의 영향을 평가하고 물순환 개선시설의 적절한 배치를 설계하기 위한 물순환 해석 모형을 개발하는 것이다. 개념적 매개변수를 사용하는 기존의 집중형 수문모형으로는 도시개발로 인한 토지이용 변화 등의 유역 특성 변화를 적절히 모의하는데 한계가 있으며, 최근 활발히 연구되고 있는 분포형 수문모형은 입력자료 구축 및 모형구동에 많은 시간과 노력이 필요하여 다양한 도시설계 대안을 평가하기에는적절하지못하다. 유역 물순환 해석 모형(Catchment hydrologic cycle Analysis Tool, 이하 CAT)은 이러한 배경을 토대로 개발된 물리적 매개변수 기반의 링크-노드 방식의 물순환 정량화 모형이다. CAT은 기존 개념적 매개변수 기반의 집중형 수문모형과 물리적 매개변수 기반의 분포형 수문모형의 장단점을 최대한 보완하여, 도시유역 개발 전 후의 장 단기적인 물순환 변화 특성을 정량적으로 평가하고 물순환 개선시설의 효과적인 설계를 지원하기 위한 물순환 해석 모형이다. 개발된 모형의 평가를 위하여 설마천 유역을 대상으로 모의를 수행하였으며 출구점인 전적비교의 6개년(2002~2007) 동안의 시간별 하천 유출량 자료를 이용하여 모형의 보정(2002~2004)과 검정(2005~2007)을 실시한 결과, 보정과 검정기간의 Nash-Sutcliffe 모형효율계수는 각각 0.75와 0.89로 나타났다.
기후변화에 의해 집중호우의 빈도 및 강도가 증가하고 지속적인 유역개발에 따른 토지이용의 증가는 토양침식 및 토사유출로 인한 재해 및 환경문제를 야기한다. 현재 광범위하게 사용되고 있는 토양침식량 산정기법은 대부분 대상유역내의 평균 토양침식량을 산출하는 총량적 개념의 경험식이므로 호우기간동안의 침식 및 퇴적의 시 공간적 변화양상을 모의할 수 없다는 한계를 지니고 있다. 따라서 보다 합리적인 유역규모의 강우-유사-유출 메카니즘 해석을 위해서는 기존의 집중형
분포형 수문모형은 컴퓨터 하드웨어의 급속한 발전과 GIS를 이용한 수문지리공간정보에의 접근성 및 활용성 증가에 따라 근래에 많은 발전을 이루게 되었다. 하지만 물리기반의 분포형 수문모형은 입력자료 구축 및 모형구동에 많은 시간과 노력이 필요하며 수문자료가 불충분한 미계측 유역에서는 모형의 구축이 어렵다는 한계점을 지니고 있다. 이에 본 논문에서는 개념적 격자 물수지 기법을 이용한 개념적 분포형 수문모형 S-RAT을 개발하였다. S-RAT 모형은 집중형
In this study, long term semi distributed hydrologic model SWAT-K(Korea) is applied to the Seolma- Cheon watershed to analyze the hydrological components. Seolma-Cheon watershed has been operated as the test watershed of Korea Institute of Constrcution Technology for 13 years. Therefore it has an enough hydrologic data to analyze the hydrologic characteristics of small watershed. Especially, for the proper runoff analysis of steep watershed, calibration is performed reflecting the regression equation of slope and slope length. The simulated discharge shows good agreement with the observed one and the simulated evapotranspiration and groundwater discharge also show satisfactory results. Finally we presents the ratio of major hydrologic components for 3 years with those obsrved ones. This study is the basic research for future analyses such as relationship between hydrologic components and vegetation, watershed sediment nonpoint sources discharge etc.
최근 국내에서는 기상이변으로 인한 홍수피해가 증가하고 있으나, 환경, 경제 및 정치적 문제로 인해 댐과 같은 대규모 수공구조물의 설치가 어려우며, 이에 대안으로 천변저류지의 설치를 검토하기 시작했다. 천변저류지는 비교적 규모가 작아 대상유역에 설치가능한 후보지가 다수 존재하며, 이들 후보지를 적절히 조합할 경우 효율적인 홍수 조절효과를 기대할 수 있다. 그러나 천변저류지 후보지가 다수 존재할 경우 최대의 효과를 제공하는 조합을 결정하기는 어려우며, 특히
강우는 물과 에너지 순환에서 가장 중요한 역할을 한다. 이 연구에서는 두개의 다른 원격탐사 센서를 이용하여 추출한 강우자료의 불확실성 (uncertainty)에 대하여 검토해 보았으며, 이에 의한 오차가 비선형 수치수문모형에서 수문인자(유출)를 모의할 때 어떻게 영향을 미치는가를 살펴보았다. 지상에서 관측된 강우 관측을 이용하여 WSR-88D (NEXRAD)에 의해 추출한 레이더 강우, 그리고 IR (Infrared) 밴드를 기반으로 하는 인공위성 강우
Nash의 관측평균순간단위도의 신뢰구간을 결정하는 기법을 개발하였다. 이 방법은 두 매개변수를 Box-Cox 변환과 유역의 상사성관계식을 이용하여 이변수정규분포의 확률변수화하고 이들의 선형 상관관계를 이용한 통계적 추정과정과 더불어 parametric bootstrap 방법을 이용한 단위도의 신뢰구간 산정 등으로 구성된다. 또한 이 방법은 미계측유역에 대한 단위도 추정에도 이용이 가능한 특징을 갖고 있다. 위천유역에 대하여 제안된 방법을 적용한 결과 제
1900년대 이후 지구의 대기 중에서 뚜렷하게 나타나고 있는 현상은 산업화에 따른 온실가스의 증가인데, 이와 같은 온실가스의 증가는 지구온난화 현상을 야기해서 지구의 기후를 변화시키고 있는 것으로 알려지고 있다. 그러나, 지구온난화 현상이 지구환경에 미치는 영향에 대한 정확한 분석은 이루어지지 못하고 있는 실정이다. 본 연구에서는 지구온난화에 따른 한반도 수문환경의 변화를 분석 및 예측하고자 하였다. 이를 위해 국지규모 수문-대기 모형을 통해 모의된 지
장래 의 증가에 따른 지구 기온의 상승은 그 정도의 차이는 있으나 불가피한 것으로 예측되고 있으며, 강수량의 경우는 대기대순환모형(General Circulation Model, GeM)의 종류에 따라 감소에서 증가까지 다양한 결과를 보이고 있다. 특히, 강수량의 변화는 평균적인 개념의 연평균, 계절평균이나 월 평균도 중요하지만 국가적인 재해와 관련된 홍수나 가뭄의 발생도 중요한 관심사항이 된다. 홍수나 가뭄의 발생변화를 적절히 예측하기 위해서는 기술적
In this paper, properties of hydrologic cycle in three experimental catchments were compared and different types of a lumped parametric model were applied to understand the hydrologic cycle in the catchments. One of them is a forest catchment and another