검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 381

        1.
        2025.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        국내 핵의학은 1959년에 갑상선 질환 환자에서 131I를 이용하여 섭취 및 배출을 측정하면서 시작된 이후, 지난 60여 년간 괄목할 만한 발전을 이루어 왔다. 1961년에 도입된 핵의학 진단영상 검사는 감마카메라를 이용한 감마카메라영상 및 양전자단층 촬영(positron emission tomography, PET)을 이용한 PET/computed tomography (CT)가 현재 주요 검사로 자리잡고 있다. 감마 카메라와 PET/CT에 활용되는 방사성동위원소는 발생기 (generator)와 사이클로트론(cyclotron)을 통해 생산되며, 이러한 방사성동위원소는 표적 장기에 선택적으로 섭취되는 화합물에 표지되어 방사성의약품으로 조제된다. 국내에서 췌장담도 질환 환자에 주로 사용되는 핵의학 진단영상검사용 방사성의약품으 로는 전신뼈스캔에 사용되는 99mTc-dicarboxypropane diphosphonate (DPD)와 99mTc-methylene diphosphonate (MDP), 99mTc-hydroxymethylene diphosphonate (HMDP)가 있으며, 간담도스캔에는 99mTc-bromotriethyliminodiacetic acid (BrIDA 또는 mebrofenin)가 있다. 또한 18F-fluorodeoxyglucose (18F-FDG)와 18F-2-fluoro-3,4-dihydroxyphenylalanine (18F-FDOPA), 111Inpentetreotide (octreotide), 68Ga-1,4,7,10-tetraazacyclododecane- 1,4,7,10-tetraacetic acid0-Tyr3-octreotide (DOTA-TOC)는 주로 췌장담도계 종양의 진단과 치료 방침 결정에 유용하게 활용 되고 있다. 핵의학 진단영상검사로 인한 환자의 의료 피폭은 국내 자연 방사선으로 의한 방사선량과 비교하여 수용 가능한 수준으로 여겨진다. 임상의가 핵의학 진단영상검사의 특성을 충분히 이해하고 이를 환자와 효과적으로 소통할 경우, 신뢰 관계 형성은 물론 진료의 질 향상에도 크게 기여할 수 있을 것이다.
        4,600원
        3.
        2025.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 딥러닝 영상 재구성 기법을 적용한 8개의 뇌질환군의 감마나이프 수술 계획용 자기공명영상(magnetic resonance imaging, MRI)의 유용성을 알아보고자 하였다. 연구 방법은 전이성 뇌종양, 뇌동정맥 기형, 수막종, 뇌하수체선종, 삼차신경통, 청신경초종, 맥락얼기 유두종, 해면상 혈관종, 총 8개의 질병을 진단받은 사람들의 T2 강조 영상(T2 weighted imaging, T2WI), 조영증강 T1 강조영상(contrast enhancement T1 weighted imaging, CE-T1WI)의 방법으로 검사한 MRI 영상을 SwiftMR을 이용하여 딥러닝 영상 재구성 기법인 디노이징(denoising)과 초해상도(super resolution)가 적용된 영상을 획득하였다. 이에 대한 성능 평가는 최대 신호대잡음비(peak signal to noise ratio, PSNR), 구조적 유사도(structural similarity index measure, SSIM), 감마나이프 방사선수술(gamma knife radiosurgery, GKRS)의 좌표계로 평가하였다. 그 결과, 원본영상을 기반으로 영상 품질이 개선된 영상의 PSNR과 SSIM은 높은 수치를 나타냄으로써 MRI 영상의 재구성이 문제없이 이루어졌고, GKRS의 수술 좌표계 또한 변화를 보이지 않았다. 결론적으로 딥러닝 영상 재구성 기법은 영상 품질 향상과 영상 보존에서 뛰어난 성능을 보임과 동시에 좌표계도 변화를 보이지 않아서, 딥러닝 영상 재구성 기법은 감마나이프 수술 계획에 유용하게 사용할 수 있는 기법임을 확인하였다.
        4,000원
        4.
        2025.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        에듀테크 시대에 접어들면서 디지털 기술을 활용한 학습 방식이 점점 확대되고 있으며, 특히 모바일 기반 애플리케이션 을 활용한 학습이 적극적으로 도입되고 있다. 이러한 학습 방식은 학습자의 참여도를 높이고, 흥미를 유발하며, 학습 효율성 향상에 긍정적인 영향을 미치고 것으로 보고되고 있다. 본 연구는 자기공명영상학 학습에서 모바일 기반 애플리 케이션 사용에 대한 학습자들의 인식, 학습 효과, 학습 만족도를 알아보고자 하였다. 대구시 소재 S 대학교 자기공명영 상학을 수강한 2, 3학년 학생 70명을 대상으로 2024년 11월 24일부터 29일까지 수업 후 모바일 애플리케이션을 활용한 퀴즈 활동을 시행하였다. 연구 결과, 애플리케이션 활용에 대한 학습자들의 인식 평균 점수는 4.58±0.66, 학습 효과는 4.61±0.62, 학습 만족도는 4.58±0.65로 나타났다. 또한, 애플리케이션 활용 전후 비교 분석에서 인식 (활용 전 3.62±0.97, 활용 후 4.58±0.66), 학습 효과(활용 전 3.60±0.92, 활용 후 4.61±0.62), 학습 만족도(활용 전 3.64±0.93, 활용 후 4.58±0.65) 모두 통계적으로 유의한 차이가 있었다(p<0.05). 이러한 결과는 자기공명영상학 교육에서 모바일 애플리케이션 기반 학습이 학습자의 참여도, 이해도, 만족도를 높이는 데 효과적임을 시사한다. 따라서 자기공명영상학뿐만 아니라 다양한 전공 분야에서도 애플리케이션 기반 학습이 유용한 교육 도구로 활용될 수 있으며, 향후 교육 및 임상 실습 현장에서 적용 가능한 기초자료로 활용될 수 있을 것 기대된다.
        4,000원
        5.
        2025.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The Event Horizon Telescope (EHT) has successfully revealed the shadow of the supermassive black hole, M87∗, with an unprecedented angular resolution of approximately 20 μas at 230 GHz. However, because of limited short baseline lengths, the EHT has been constrained in its ability to recover larger-scale jet structures. The extended Korean VLBI Network (eKVN) is committed to joining the EHT from 2024 that can improve short baseline coverage. This study evaluates the impact of the participation of eKVN in the EHT on the recovery of the M87∗ jet. Synthetic data, derived from a simulated M87∗ model, were observed using both the EHT and the combined EHT+eKVN arrays, followed by image reconstructions from both configurations. The results indicate that the inclusion of eKVN significantly improves the recovery of jet structures by reducing residual noise. Furthermore, jackknife tests, in which one or two EHT telescopes were omitted—simulating potential data loss due to poor weather—demonstrate that eKVN effectively compensates for these missing telescopes, particularly in short baseline coverage. Multi-frequency synthesis imaging at 86–230 GHz shows that the EHT+eKVN array enhances the recovered spectral index distribution compared to the EHT alone and improves image reconstruction at each frequency over single-frequency imaging. As the EHT continues to expand its array configuration and observing capabilities to probe black hole physics more in depth, the integration of eKVN into the EHT will significantly enhance the stability of observational results and improve image fidelity. This advancement will be particularly valuable for future regular monitoring observations, where consistent data quality is essential.
        4,500원
        6.
        2024.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 K-공간 기반 노이즈 제거 딥러닝(DL)을 이용한 확산강조영상(DWI)의 유용성을 평가하고자 하였다. 연구 를 위해 간세포암으로 확진된 환자 30명을 대상으로 DL 기법 적용 전후의 DWI에 각각 확산경사자계(b-value) 50 과 800을 적용하여 영상화하였다. 획득한 영상에서 간세포암 조직과 정상 간 조직에 관심 영역을 설정하여 b50, b800에서의 신호대잡음비(SNR)와 대조대잡음비(CNR)를 측정하였고 두 명의 관찰자가 각 영상에서 간세포암 조직 을 측정하여 겉보기확산계수(ADC) 값을 계산하였다. 모든 측정값의 평가는 T-검정(T-test)을 사용하여 상관관계 를 평가하였으며 급내상관계수(ICC)를 이용하여 두 관찰자 간 ADC 측정값의 일치도와 신뢰도를 평가하였다. 연구 결과, DL 적용 후 영상에서 SNR과 CNR이 모두 높아졌으며 통계적으로 유의한 것으로(p<0.05) 나타났다. 또한, 간세포암의 ADC 값은 통계적으로 유의하지 않은 것으로(p<0.05) 나타났지만 두 관찰자 간 ADC 측정값의 일치에 대한 신뢰도는 상관계수가 0.75 이상으로 우수하였고, 간세포암의 고유한 성질로 인해 ADC 값의 변화가 적은 점을 고려한다면 충분히 유의한 결과라고 볼 수 있다. 결론적으로 DL DWI은 영상 획득 시간을 단축하면서도 기존 DWI 보다 질적으로 더 나은 영상을 획득했다. 향후 다양한 MRI 검사에 DL이 적용된다면 더욱 유용하게 사용될 것으로 사료 된다.
        4,000원
        7.
        2024.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        자기공명영상은 인체 내부 구조와 병변을 비침습적으로 시각화하는 핵심 의료 영상 기법으로 자리 잡고 있으며, 특히 신경계 및 심혈관계 질환과 같은 복잡한 질병의 진단에서 필수적인 도구로 활용되고 있다. 기존의 자기공명영상 시스 템은 영상의 해상도와 신호대잡음비에서 한계가 있었으나, 최근의 기술 발전은 이러한 한계를 극복하고 진단 정확성 을 높이는 방향으로 나아가고 있다. 고자기장 자기공명영상 시스템의 도입은 해상도와 신호대잡음비를 개선하는 데 기여하고 있으며, 병렬 영상 기법은 촬영 속도를 향상시키면서도 영상 품질의 손실을 최소화한다. 또한, 압축 센싱 (compressed sensing) 기술은 데이터 획득 시간을 줄여 촬영 효율성을 높이는 데 중요한 역할을 하고 있다. 최근 인공지능(AI)의 발전으로, 자기공명영상 데이터에서 초해상도 복원(super-resolution) 및 노이즈 제거와 같은 영상 후처리 기술이 획기적으로 향상되었다. 인공지능 기반의 영상 향상 기술은 저해상도 데이터를 고해상도로 변환하고, 촬영 과정에서 발생할 수 있는 왜곡과 노이즈를 효과적으로 제거하여, 더 정확하고 명확한 진단 영상을 제공한다. 이러한 발전은 단순히 영상의 품질을 높이는 것을 넘어, 임상 진단의 정확성과 효율성을 크게 향상시키고 있으며, 특히 제한된 촬영 시간을 요구하는 응급 상황에서 유용성이 두드러진다. 본 논문에서는 자기공명영상 촬영 기법의 최신 발전과 인공지능 기반 영상 향상 기술의 동향을 여러모로 분석하고, 이들의 임상적 유용성을 조명함으로써 고해 상도 자기공명영상이 의료 분야에서 가지는 의미와 향후 발전 방향을 제시하고자 한다.
        4,300원
        8.
        2024.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 호흡동조화기법의 대안으로 딥러닝 자유호흡기법에서 b-value 별 겉보기확산계수 값을 평가하고 확 산강조영상과 겉보기확산계수 지도의 해부학적 일치성을 분석하여 적절한 여기횟수 값을 알아보고자 하였다. 연구 방법은 2023년 7월부터 2024년 1월까지 간 자기공명영상 검사가 의뢰된 성인 남녀 35명을 대상으로 하였고 사용 장비는 Magnetom Skyra 3.0T(Siemens, Germany)를 이용하였다. 자유호흡기법의 비교를 위해 b-value 50, 400, 800(s/mm2)의 여기횟수를 각각 딥러닝 호흡동조화기법에서 2,3,4으로 딥러닝을 이용하지 않은 일반 자유호 흡기법에서 4,6,8으로 검사하였다. 딥러닝을 추가한 일반 자유호흡기법에서는 1,2,3 여기횟수, 2,3,4 여기횟수, 3,5,6 여기횟수, 4,6,8 여기횟수로 변화하였다. 연구 결과 딥러닝 자유호흡기법에서 간의 좌엽과 우엽, 담낭의 평균 겉보기확산계수 값은 딥러닝 호흡동조화기법과 비교하여 모두 통계적 유의성을 확인하였다. 한편 정성적 평가의 해 부학적 일치성을 분석한 결과 딥러닝 자유호흡기법의 3,5,6 여기횟수와 4,6,8 여기횟수에서 가장 높은 점수를 얻었 으며 검사 시간에서는 딥러닝 호흡동조화기법과 비교하여 약 51%, 40% 감소하였다. 따라서 간 진단에 있어 딥러닝 자유호흡기법에서 b-value 별 적절한 여기횟수 값을 이용한다면 겉보기확산계수 지도의 정확도 유지와 함께 검사 시간을 감소시킬 수 있어 임상적으로 유용한 검사가 될 것으로 사료된다.
        4,000원
        9.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        흉골 자기공명영상 검사 시 호흡 등 환자 움직임에 의한 인공물 발생을 최소화하는 것은 어렵다. 하지만 자기공명영 상 검사는 타 영상 검사와 비교해 흉골 병변을 발견하는 데 있어 진단적 가치가 높은 장점이 있다. 따라서 본 연구에 서는 환자의 검사 자세 및 딥러닝 기법을 통해 최적의 검사 방법을 도출하고자 한다. 자세 별 영상 변화를 확인하기 위해 바로 누운 자세, 엎드린 자세, 유방 코일을 사용한 엎드린 자세로 진행하였으며, 고식적 기법의 영상과 Deep Resolve Boost(DRB) 기법을 적용한 영상을 비교 관찰하였다. 모든 대상에게 같은 조건으로 각 영상을 2회씩 획득 한 후 전반적인 영상 품질을 기준으로 정성적으로 평가하였고, DRB의 적용 여부에 따른 신호 대 잡음비의 변화 정도를 정량적으로 평가하여 개선 정도를 산출하였다. 정성적 평가에서 DRB 적용 여부와 무관하게 엎드린 자세, 유방 코일을 사용한 엎드린 자세, 바로 누운 자세 순으로 높은 점수를 얻었으며, DRB를 적용한 영상이 고식적 기법 의 영상보다 높은 점수를 얻었다. 또한 정량적 평가를 통해 유방 코일을 사용한 엎드린 자세, 엎드린 자세, 바로 누운 자세 순으로 높은 개선 정도를 확인하였다. 본 연구를 통해 흉골 검사 시 DRB 기법을 적용하는 것은 영상의 질을 높이는 방법임을 확인하였다. DRB를 적용하지 못하는 환경에서는 될 수 있으면 엎드린 자세를 적용하는 것을 권고하며, DRB를 적용할 수 있는 환경에서는 환자 측 인자를 고려하여 엎드린 자세와 유방 코일을 사용한 엎드린 자세를 모두 적용할 수 있다.
        4,000원
        20.
        2024.04 구독 인증기관·개인회원 무료
        Due to climate change and the rise in international transportation, there is an emerging potential for outbreaks of mosquito-borne diseases such as malaria, dengue, and chikungunya. Consequently, the rapid detection of vector mosquito species, including those in the Aedes, Anopheles, and Culex genera, is crucial for effective vector control. Currently, mosquito population monitoring is manually conducted by experts, consuming significant time and labor, especially during peak seasons where it can take at least seven days. To address this challenge, we introduce an automated mosquito monitoring system designed for wild environments. Our method is threefold: It includes an imaging trap device for the automatic collection of mosquito data, the training of deep-learning models for mosquito identification, and an integrated management system to oversee multiple trap devices situated in various locations. Using the well-known Faster-RCNN detector with a ResNet50 backbone, we’ve achieved mAP (@IoU=0.50) of up to 81.63% in detecting Aedes albopictus, Anopheles spp., and Culex pipiens. As we continue our research, our goal is to gather more data from diverse regions. This not only aims to improve our model’s ability to detect different species but also to enhance environmental monitoring capabilities by incorporating gas sensors.
        1 2 3 4 5