When disposing of spent nuclear fuel, there is a risk of exposure that could exceed the annual allowable dose due to human intrusion after the institutional control period. Therefore, it can be treated with the pyroprocess, but the decontamination factor is not sufficient, and an additional actinide recovery is required because molten waste salt-containing actinide is generated. In the case of reducing the element in the spent molten salt through an electrochemical method using a liquid Bi electrode, it is difficult to separate only the actinide element because the two-element groups are reduced together due to the large concentration difference between the actinide and the rare earth element. Therefore, a process of forming a Bi intermetallic compound using a liquid Bi electrode, which has higher element separation efficiency than a liquid Cd electrode, and physically separating the Bi intermetallic compound using the difference in density of the produced compound has been proposed. For this, it is necessary to understand the properties and density separation of the intermetallic compound to be produced, and experiments were planned and conducted for this purpose. Various metals were added to the molten Bi to form an intermetallic compound, and an analysis device such as SEM was used to determine the intermetallics distribution, composition, and internal structure. As the added metal, Ce is a representative element for lanthanide, and Hf with the most similar intermetallic density, decomposition temperature, and standard reduction potential to U, and U as a substitute element for actinide was adopted. As a result of SEM and EDS analysis, it was confirmed that the separation was made in Bi due to the density difference between the produced intermetallic compounds. A Ce-Bi intermetallic compound was observed in the upper part, Hf at a concentration smaller than the error range was detected, and a Hf-Bi intermetallic compound which containing high concentration of Ce was observed in the lower part. Separation of high-purity Ce seems to be possible in the upper part, and it seems difficult to separate high-purity Hf in the lower part. Therefore, to separate highpurity Hf, an additional process suitable for it seems to be necessary.
The high temperature deformation behavior of Ni3Al and Ni3(Al,Mo) single crystals that were oriented near <112> was investigated at low strain rates in the temperature range above the flow stress peak temperature. Three types of behavior were found under the present experimental conditions. In the relatively high strain rate region, the strain rate dependence of the flow stress is small, and the deformation may be controlled by the dislocation glide mainly on the {001} slip plane in both crystals. At low strain rates, the octahedral glide is still active in Ni3Al above the peak temperature, but the active slip system in Ni3(Al,Mo) changes from octahedral glide to cube glide at the peak temperature. These results suggest that the deformation rate controlling mechanism of Ni3Al is viscous glide of dislocations by the <110>{111} slip, whereas that of Ni3(Al,Mo) is a recovery process of dislocation climb in the substructures formed by the <110>{001} slip. The results of TEM observation show that the characteristics of dislocation structures are uniform distribution in Ni3Al and subboundary formation in Ni3(Al,Mo). Activation energies for deformation in Ni3Al and Ni3(Al,Mo) were obtained in the low strain rate region. The values of the activation energy are 360 kJ/mol for Ni3Al and 300 kJ/mol for Ni3(Al,Mo).
Morphology and formation processes of lamellar grain boundaries in titanium rich binary TiAl intermetallics were studied. TiAl alloys containing aluminum content of 44 to 48 at.% were induction-heated to 1723 K followed by helium-gasquenching at various temperatures. For the Ti-44%Al, few lamellae were observed in samples quenched from higher than 1473 K. Although small peaks of beta phase were detected using X-ray diffraction, only the ordered hexagonal phase (α2) with clear APB contrast was observed in TEM observation. For the Ti-48 at.%Al alloy, almost no lamellar structure, and straight grain boundaries were observed in samples quenched from higher than 1623 K. The formation of lamellae along grain boundaries was observed in the sample quenched from 1573 K. The fully lamellar microstructures with serrated boundaries were observed in samples quenched from lower than 1473 K. It was found that the formation of γ platelets took place at higher temperatures in Ti-48 at.%Al than in Ti-44 at.%Al. Although the size of the serration is different, serrated lamellar grain boundaries could be obtained for all alloy compositions employed. The serration appeared to be due to the grain boundary migration induced by precipitation and growth of γ. Differences in transformation characteristics with aluminum content are discussed.
Mechanically driven decomposition of intermetallics during mechanical milling(MM 1 was investigated. This process for Fe-Ce and Fe-Sn system was studied using conventional XRD, DSC, magnetization and alternative current susceptibility measurements. Mechanical alloying and milling form products of the following composition (in sequence of increasing Gecontent): () bcc solid solution, +-phase (), -phase, +FeGe(B20), FeGE(B20), FeGe(B20)+,,+Ge, Ge. Incongruently melting intermetallics and decompose under milling. produces mixture of -phase and FeGe(B20), produces mixture of FeGe(B20) and phases. These facts are in good agreement with the model that implies local melting as a mechanism of new phase for-mation during medchanical alloying. Stability of FeGe(B20) phase, which is also incongruently melting compound, is explained as a result of highest density of this phase in Fe-Ge system. Under mechanical milling (MM) in planetary ball mill, FeSn intermetallic decomposes with formation and phases, which have the biggest density among the phases of Fe-Sn system. If decomposition degree of FeSn is relatively small(<60%), milled powder shows superparamagnetic behavior at room temperature. For this case, magnetization curves can be fitted by superposition of two Langevin functions. particle sizes for ferromagnetic phase determined from fitting parameters are in good agreement with crystalline sizes determined from XRD data and remiain approximately chageless during MM. The decomposition of FeSn is attributed to the effects of local temperature and local pressure produced by ball collisions.
Elemental powders are used in high energy milling processes for the synthesis of new compounds. The low temperature solid state reactions during milling in inert gas atmosphere may result in intermetallic phases, carbides, nitrides or silicides with a nanocrystalline structure. To obtain dense materials from the powders a pressure assisted densification is necessary. On the other side the defect-rich microstructure can be used for activated sintering of elemental powder mixtures to obtain dense bodies by pressureless sintering. Results are discussed for nanocrystalline cermet systems and for the sintering of aluminides and silicides
Fe-28%Al(Fe3Al)과 Fe-28%Al-4%Cr(Fe3Al-4Cr) 금속간화합물을 대기중 1073, 1273, 1473k의 온도에서 최고 17일까지 장시간 산화시켰다. Fe3Al-4Cr의 산화저항은 근본적으로 Fe3Al과 거의 비슷하거나, 약간 우수하였다. Fe3Al 위에 형성된 산화물은 거의 순수한 α-AL2O3로만 구성되어 있었으며, Fe3Al-4Cr 위에 형성된 산화물은 약간의 Fe와 Cr 이온이 고용된 α-AL2O3로 구성되어 있었다. 외부산화막을 형성하기 위해 모재원소의 외부확산에 의해 산화물-모재 계면에는 Kirkendall 기공이 존재하였다. Fe3Al(-4Cr) 표면에 형성된 산화막은 1273k가지는 비교적 얇고 치밀하였으나, 1473k에서 산화막의 박리와 함께 상대적으로 큰 무게증가가 발생하였다.
유도 용해후 열기계적 처리를 거친 3종류의 Al3Ti-Cr합금, 즉 Al67Ti25Cr8, Al66Ti24Cr10 및 Al59Ti26Cr15에 대해 2.5% NaCl 용액 내에 부삭시험과 1000, 1100 및 1200˚C에서의 고온 산화시험을 실시하였다. 전기화학적 평가결과에서 Cr조성이 증가함에 따라 국부부식에 대한 내식성이 증가하였으며, 부동태 피막의 취성파괴를 방지하였다. XPS결과는 Al3Ti-Cr합금의 부동태 피막은 주로 Al2O3로 구성되어 있으며, TiO2 및 Cr2O3도 공존하고 있음을 알 수 있었다. 고온 내산화성은 모든 시편이 전체적으로 뛰어난 내산화성을 지니고 있었는데, 구체적으로는 Al59Ti26Cr15, Al66Ti24Cr10 및 Al67Ti25Cr8의 순으로 증가하였다. 이는 합금내의 Al 함량이 증가할수록 Al2O3보호피막의 형성이 용이하였기 때문이었다.
Engine valve-shaped TiAl-Mn intermetallics containing 43.5 to 47.5at%Al (Mn/Al=0.036) are successively fabricated by reactive sintering the elemental powder mixtures near-net shaped by extrusion and die forging. A duplex structure consisted of lamellar grains and equiaxed grains is developed for all compositions, and the areal fraction of the lamellar grains(or equiaxed grains) decreases (or increases) with increasing Al content. As Al content increased, the elongation increases with accompanying decrease in yield strength and ultimate tensile strength at both room temperature and 80. This indicates that the suitable composition is Ti-45at%Al-1.6at%Mn in considering the balance of ambient and elevated tensile properties. The reactive-sintered Ti-45Al-1.6Mn alloy shows superior oxidation resistance not only to the plasma arc melted one but also to the heat resistance steel STR35(representative exhaust valve head material for automotive engine). The reactive-sintered Ti-45Al-1.6Mn alloy coated with an oxidizing scale exhibits a better wear resistance than induction hardened martensitic steel STR11(representative exhaust valve tip material for automotive engine).
합금원소(Cr, V, Si. Mo, Nb)가 첨가된 TiAi 금속간화합물의 고온 산화거동을 대기중의 900~1100˚C에서 관찰하였다. 산화반응물은 XRD, SEM, WDX을 이용하여 분석하였다. 등온 산화에 있어서 Cr과 V이 각각 첨가된 시편은 무게증가가 많았으나, Si, Mo, Vb가 각각 첨가된 시편은 상대적으로 무게증가각 적었아. 그리고, Cr과 V이 각각 첨가된 시편의 산화속도는 TiAi의 그것보다 항상 크게 나타났으며, Si, Mo, Vb가 각각 첨가된 시편의 산화속도는 TiAi의 그것보다 향상되지 않고, Si, Mo또는 Nb 첨가는 내산화성을 향상시킨다. Si, Mo, Nb이 각각 첨가된 TiAI합금표면에 형성된 산화물은 보호막 역할을 함으로 산소와 합금원소의 확산을 감소시키는 역할을 하였다. 특히, Nb는 산화의 초기단계에서는 AI2O3를 형성하려는 경향이 강하기 때문에 연속적인 AI2O3층과 조밀한 Tio2+AI2O3 혼합층이 형성되었다. Nb가 첨가된 합금의 백금 marker 실험결과에 따르면, 산소가 주로 합금내부로 확산하여 합금표면에서 산화물을 형성하였다. 900˚C에서의 열반복주기(thermal cyclic)산화실험 결과, 다른 합금원소와 비교해 볼 때 Cr또는 Nb첨가가 금속기지와 산화층간의 접착력을 향상시키는 것으로 나타났다.