This study presents distribution of naturally occurring radioactive materials in groundwater in Jeju island. Radon (222Rn) and potassium (40K) concentrations were performed by using Liquid Scintillation Counter and Ion Chromatograph respectively. In addition, the activities of uranium and thorium nuclides were analyzed by Inductively Coupled Plasma Mass Spectroscopy. Groundwater samples were collected from 9 sites of water intake facilities for wide area supply in Jeju island from September 2022 to September 2023. The 40K concentrations of groundwater ranged between 0.050 and 0.400 Bq·L-1. The radon concentrations in groundwater were in the range of 0 to 60 Bq L-1, and there was no groundwater exceeding the range of 148 Bq L-1 proposed by the US EPA. The distribution of uranium and thorium in groundwater varied from 0 to 500 ng L-1 and 0 to 2.4 ng L-1, respectively. The concentrations of uranium did not exceed 30 μg L-1, thresholds indicated by the US EPA. By analyzing the concentrations of 40K, 222Rn, 238U and 232Th, the annual effective dose of residents can be assessed. The evaluated residents’ effective dose from natural radionuclides due to intake of drinking water is less than the recommended value of 100 μSv y-1. Consequently, this study indicates that the cancer risks of the residents in Jeju island from naturally occurring radioactive materials ingested with water is insignificant.
This study presents distribution of naturally occurring radioactive materials in groundwater in Jeju island. Radon (222Rn) and potassium (40K) concentrations were performed by using RAD H2O of RAD7 and 940 Professional IC Vario, respectively. In addition, the activities of uranium and thorium nuclides were analyzed by ICP-MS. All of the groundwater samples were collected from 29 sites from August to October 2022. The radon concentrations in groundwater were in the range of 0 to 60 Bq L-1, and there was no groundwater exceeding the range of 148 Bq L-1 proposed by the US EPA. The distribution of uranium in groundwater varied from 0 to 0.6 μg L-1 and did not exceed 30 μg L-1, thresholds indicated by the US EPA.
In the coastal areas of Jeju Island, composed of volcanic rocks, saltwater intrusion occurs due to excessive pumping and geological characteristics. Groundwater level and electrical conductivity (EC) in multi-depth monitoring wells in coastal areas were characterized from 2005 to 2019. During the period of the lowest monthly precipitation, from November 2017 until February 2018, groundwater level decreased by 0.32-0.91 m. During the period of the highest monthly precipitation, from September 2019 until October 2019, groundwater level increased by 0.46-2.95 m. Groundwater level fluctuation between the dry and wet seasons ranged from 0.79 to 3.73 m (average 1.82 m) in the eastern area, from 0.47 to 6.57 m (average 2.55 m) in the western area, from 0.77 to 8.59 m (average 3.53 m) in the southern area, and from 1.06 to 12.36 m (average 5.92 m) in the northern area. In 2013, when the area experienced decreased annual precipitation, at some monitoring wells in the western area, the groundwater level decreased due to excessive groundwater pumping and saltwater intrusion. Based on EC values of 10,000 μS/cm or more, saltwater intrusion from the coastline was 10.2 km in the eastern area, 4.1 km in the western area, 5.8 km in the southern area, and 5.7 km in the northern area. Autocorrelation analysis of groundwater level revealed that the arithmetic mean of delay time was 0.43 months in the eastern area, 0.87 months in the northern area, 10.93 months in the southern area, and 17.02 months in the western area. Although a few monitoring wells were strongly influenced by nearby pumping wells, the cross-correlation function of the groundwater level was the highest with precipitation in most wells. The seasonal autoregressive integrated moving average model indicated that the groundwater level will decrease in most wells in the western area and decrease or increase in different wells in the eastern area.
We used numerical models to reliably analyze the groundwater flow and hydraulic conductivity on Jeju Island. To increase reliability, improvements were made to model application factors such as hydraulic watershed classification, groundwater recharge calculation by precipitation, hydraulic conduction calculation using the pilot point method, and expansion of the observed groundwater level. Analysis of groundwater flow showed that the model-calculated water level was similar to the observed value. However, the Seogwi and West Jeju watersheds showed large differences in groundwater level. These areas need to be analyzed by segmenting the distribution of the hydraulic conductivity. Analyzing the groundwater flow in a sub watershed showed that groundwater flow was similar to values from equipotential lines; therefore, the reliability of the analysis results could be improved. Estimation of hydraulic conductivity distribution according to the results of the groundwater flow simulation for all areas of Jeju Island showed hydraulic conductivity > 100 m/d in the coastal area and 1 45 m/d in the upstream area. Notably, hydraulic conductivity was 500 m/d or above in the lowlands of the eastern area, and it was relatively high in some northern and southern areas. Such characteristics were found to be related to distribution of the equipotential lines and type of groundwater occurrence.
This study was carried out to identify the problems of the underground watersheds on Jeju Island, and to establish the hydraulic groundwater basin to be used as basis for the analysis of the groundwater model. In order to evaluate the adequacy of the groundwater basin on Jeju Island, a correlation analysis between elevation and groundwater level was conducted using data from 125 observation wells. The analysis, conducted with an elevation step of 100 m, exhibited values of R2 in the range 0.1653-0.8011. No clear correlation was observed between elevation and groundwater level. In particular, the eastern and western areas showed an inverse proportionality between elevation and groundwater level. The Kriging technique was used to analyze the underground water level data and to define the equipotential lines for all areas of Jeju Island. Eight groundwater watersheds were delineated by considering the direction of groundwater flow, the positions of the observation wells, and the long and short axes of the watersheds.
The purpose of this study was to minimize salt water intrusion into freshwater aquifers and limit the development of freshwater aquifers, by selecting an appropriate excavation depth of in the western coastal area of Jeju Island. The study site was mostly basaltic lava, which was mainly composed of trachy basalt. A vertical logging test was conducted to investigate the vertical distribution of the groundwater and saline groundwater interface in the study well. It was found that freshwater groundwater, saline groundwater, and freshwater groundwater are distributed from the surface to approximately 16 m, 16∼50 m, and 50∼60 m, below the ground, respectively. In order obtain saline groundwater and minimize the inflow of freshwater into this well, the drilling depth should be limited in the range of 16∼50 m from the surface. Thus, saline groundwater well development should be carried out with reference to the measurement results, which depend on the drilling depth and EC (electrical conductivity) obtained with drilling apparatus for geology and ground handling.
In this study, groundwater flow was analyzed targeting Dae-jeong watershed, which exhibited the largest variations of groundwater levels at the identical elevation points among the 16 watersheds of Jeju Island. The issues of the methods applied in practice were identified and improvement plans were suggested. This groundwater-flow estimates derived by applying hydraulic conductivity values onto zones of equal topographic ground level were found to be quite different from actual measured groundwater flow. Conversely, groundwater-flow estimates that utilized hydraulic conductivity values applied onto groundwater-level equipotential lines indicated relatively lesser divergences from actual measured groundwater flow. The reliabilities of the two approaches were assessed for 60 randomly selected points on DEM (digital elevation model) maps, The method using hydraulic conductivity values applied onto groundwater-level contours turned out to be the more reliable approach for the Dae-jeong watershed in Jeju Island.
The aim of this study was to evaluate the occurrence of vanadium in Jeju Island groundwater, focusing on the spatio-temporal patterns and geochemical controlling factors of vanadium. For this, we collected two sets of groundwater data: 1) concentrations of major constituents of 2,595 groundwater samples between 2008 and 2014 and 2) 258 groundwater samples between December 2006 and June 2008. The concentrations of groundwater vanadium were in the range of 0.2 71.0 μg/L (average, 12.0 μg/L) and showed local enrichments without temporal/seasonal variation. This indicated that vanadium distribution was controlled by 1) the geochemical/mineralogical composition and dissolution processes of original materials (i.e., volcanic rock) and 2) the flow and chemical properties of groundwater. Vanadium concentration was significantly positively correlated with that of major ions (Cl-, Na+, and K+) and trace metals (As, Cr, and Al), and with pH, but was negatively correlated with NO3-N concentration. The high concentrations of vanadium (>15 μg/L) occurred in typically alkaline groundwater with high pH ( 8.0), indicating that a higher degree of water-rock interaction resulted in vanadium enrichment. Thus, higher concentrations of vanadium occurred in groundwater of Na-Ca-HCO3, Na-Mg-HCO3 and Na-HCO3 types and were remarkably lower in groundwater of Na-Ca-NO3(Cl) type that represented the influences from anthropogenic pollution.
The estimation of groundwater usage in Jeju island is important to understand hydrologic cycle system and to plan management of water resource because large amounts of groundwater have been used for agricultural and domestic purpose. The model has been developed to estimate agricultural groundwater usage for garlic at uplands and citrus at orchards raising outdoors using the soil water balance model from FAO 56, respectively. The total amount of water supplied for the crop evapotranspiration and the multipurpose function such as sprout promotion can be simulated by the model. However, due to the discrepancy of water use in initial stage between calculated and observed, the model was calibrated and verified using actual groundwater usage monitoring data for 3.5 years (2011.6 to 2014.12) at three uplands for garlic and three orchards for citrus. Consequently, it would be concluded that the model simulated efficiently actual water usage in that root mean square (RMS) and normalized RMS of the validation stage were less than 8.99 mm and 2.43%, respectively, in two different conditions.
To estimate water balance of Pyosun watershed in Jeju Island, a three-dimensional finite difference model MODFLOW was applied. Moreover, the accuracy of groundwater flow modeling was evaluated through the comparison of the recharge rate by flow modeling and the existing one from water balance model. The modeling result under the steady-state condition indicates that groundwater flow direction was from Mt. Halla to the South Sea and groundwater gradient was gradually lowered depending on the elevation. Annual recharge rate by the groundwater flow modeling in Pyosun watershed was calculated to 236 million m3/year and it was found to be very low as compared to the recharge rate 238 million m3/year by the existing water balance model. Therefore, groundwater flow modeling turned out to be useful to estimate the recharge rate in Pyosun watershed and it would be available to make groundwater management policy for watershed in the future.
Groundwater level hydrographs from observation wells in Jeju island clearly illustrate distinctive features of recharge showing the time-delaying and dispersive process, mainly affected by the thickness and hydrogeologic properties of the unsaturated zone. Most groundwater flow models have limitations on delineating temporal variation of recharge, although it is a major component of the groundwater flow system. Recently, a convolution model was suggested as a mathematical technique to generate time series of recharge that incorporated the time-delaying and dispersive process. A groundwater flow model was developed to simulate transient groundwater level fluctuations in Pyoseon area of Jeju island. The model used the convolution technique to simulate temporal variations of groundwater levels. By making a series of trial-and-error adjustments, transient model calibration was conducted for various input parameters of both the groundwater flow model and the convolution model. The calibrated model could simulate water level fluctuations closely coinciding with measurements from 8 observation wells in the model area. Consequently, it is expected that, in transient groundwater flow models, the convolution technique can be effectively used to generate a time series of recharge.
The depth of low permeable layer in Jeju Island was analyzed using the geologic columnar section data. The highest low permeable layer was found in center of Mt. Halla and the deepest area was in eastern part of Jeju Island. The study area, Seongsan watershed, is located in the eastern part of Jeju where the low permeable layer showing deep in a northward direction.
Based on this analysis, the MODFLOW modeling was performed for groundwater flow of Seongsan watershed. The boundary of Seongsan watershed was set up as a no-flow and the modeling result showed the difference -0.26~0.62 m compared to the observed groundwater level. Meanwhile, MODFLOW model results considering low permeable layer showed -0.26~0.36 m differences compared to groundwater level and indicated more accurate than no-flow method result. Therefore, to interpret the groundwater flow over Seongsan watershed, comprehensive consideration including the low permeable layer distribution below the basalt layer is needed.
함양 지체시간은 강우로부터 지표면을 지나 지하수면으로 도달하는 침투수의 통로 역할을 하는 비포화대를 통과할 때 발생하는 시간지연을 의미한다. 함양 지체시간을 직접적으로 측정하는 것은 불가능하기 때문에 본 연구는 고도와의 단순회귀분석을 이용하여 지체시간에 대한 경험식을 유도하였다. 이를 위하여 제주도 내에 4개의 유역(한천, 강정천, 외도천, 천미천)을 선정하여 총 18개의 관측지점에 대한 지체시간을 산정하였다. 또한 제안된 회귀식을 검증하기 위하여 선형 저수지 이론으로부터 유도된 방정식을 적용하여 구한 지체시간과 본 연구에서 유도된 경험식으로부터 산정된 지체시간을 이용하여 각각 산정한 지하수 함양량을 비교한 결과 상관성이 높은 것을 확인할 수 있었다. 따라서 본 연구에서 유도한 경험식을 이용하여 SWAT모형의 지체시간 매개변수에 적용할 경우 지하수 함양의 공간적 지연효과를 잘 반영할 것으로 판단된다.
Due to tidal force, it is very difficult to estimate the hydraulic parameters of high permeable aquifer near coastal area in Jeju Island. Therefore, to eliminate the impact of tidal force from groundwater level and estimate the hydraulic properties, tidal response technique has been mainly studied. In this study we have extracted 38 tidal constituents from groundwater level and harmonic constants including frequency, amplitude, and phase of each constituent using T_TIDE subroutine which is used to estimate oceanic tidal constituents, and then we have estimated hydraulic diffusivity associated with amplitude attenuation factor(that is the ratio of groundwater level amplitude to sea level amplitude for each tidal constituent) and phase lag(that is phase difference between groundwater level and sea level for each constituent). Also using harmonic constants for each constituent, we made the sinusoidal wave and then we constructed the synthesized wave which linearly combined sinusoidal wave. Finally, we could get residuals(net groundwater level) which was excluded most of tidal influences by eliminating synthesized wave from raw groundwater level. As a result of comparing statistics for synthesized level and net groundwater level, we found that the statistics for net groundwater level was more insignificant than those of synthesized wave. Moreover, in case of coastal aquifer which the impact of tidal force is even more than those of other environmental factors such as rainfall and groundwater yield, it is possible to predict groundwater level using synthesized wave and regression analysis of residuals.
Quantitative assessment of groundwater level change under extreme event is important since groundwater system is directly affected by drought. Substantially, groundwater level fluctuation reveals to be delayed from several hours to few months after raining according to the aquifer characteristics. Groundwater system in Jeju Island would be also affected by drought and almost all regions were suffered from a severe drought during summer season (July to September) in 2013. To estimate the effect of precipitation to groundwater system, monthly mean groundwater levels in 2013 compared to those in the past from 48 monitoring wells belong to be largely affected by rainfall(Dr) over Jeju Island were analyzed. Mean groundwater levels during summer season recorded 100 mm lowered of precipitation compared to the past 30 years became decreased to range from 2.63 m to 5.42 m in southern region compared to the past and continued to December. These decreasing trends are also found in western(from –1.21 m to –4.06 m), eastern(-0.91 m to –3.24 m), and northern region(from 0.58 m to –4.02 m), respectively. Moreover, the response of groundwater level from drought turned out to be –3.80 m in August after delaying about one month. Therefore, severe drought in 2013 played an important role on groundwater system in Jeju Island and the effect of drought for groundwater level fluctuation was higher in southern region than other ones according to the regional difference of precipitation decrease.
Temporal variation of groundwater levels in Jeju Island reveals time-delaying and dispersive process of recharge, mainly caused by the hydrogeological feature that thickness of the unsaturated zone is highly variable. Most groundwater flow models have limitations on delineating temporal variation of recharge, although it is a major component of the groundwater flow system. A new mathematical model was developed to generate time series of recharge from precipitation data. The model uses a convolution technique to simulate the time-delaying and dispersive process of recharge. The vertical velocity and the dispersivity are two parameters determining the time series of recharge for a given thickness of the unsaturated zone. The model determines two parameters by correlating the generated recharge time series with measured groundwater levels. The model was applied to observation wells of Jeju Island, and revealed distinctive variations of recharge depending on location of wells. The suggested model demonstrated capability of the convolution method in dealing with recharge undergoing the time-delaying and dispersive process. Therefore, it can be used in many groundwater flow models for generating a time series of recharge.
지하수 의존도가 높은 제주도에서는 담수 지하수는 물론 어류의 육상 양식을 위한 염분이 높은 지하수도 활발하게 개발되고 있다. 본 연구는 제주도 성산유역을 대상으로 담수와 염수 지하수 개발이 지하수계에 미치는 영향을 분석하였다. 경계면 모델을 이용하여 담수와 염수의 흐름을 모의하고 담수와 염수 개발의 영향을 조사하였다. 담수 개발은 기존의 연구결과에서 익히 알려진 바와 같이 지하수위 강하와 해수쐐기 침투를 야기하는 것으로 나타났다. 염지하수 개발은 지하수위를 강하시키는 부정적 영향과 함께 해수침투를 저감시키는 긍정적 효과도 있는 것으로 나타났다. 담-염수 사이의 유한한 두께의 천이대에 대한 수정 Ghyben-Herzberg 비율을 유도하고 해수침투 관측정에서 관측된 자료와 비교하였다.
Fluctuation patterns of groundwater level as a factor that reflects the characteristics of groundwater system can be categorized as the various types of aquifer with the time-series data. Time-series data on groundwater level obtained from 115 monitoring wells in Jeju Island were classified according to variation types, which were largely affected by rainfall(Dr), rainfall and pumping(Drp), and unknown cause(De). Analysis results indicate that 106 wells belong to Dr and Drp and the ratio of the wells with the wide range of fluctuation in the western and northern regions was higher than that in the eastern and southern regions. From the results that Drp is relatively higher than Dr in the western region which has the largest agricultural areas, groundwater level fluctuations may be affected significantly due to the intensive agricultural use. Non-parametric trend analysis results for 115 monitoring wells show that the increasing and decreasing trends as the ratio of groundwater levels were 14.8% and 22.6%, respectively, and groundwater levels revealed to be increased in the western, southern and northern regions excluding eastern region. Results of correlation analysis that cross-correlation coefficients and the time lags in the eastern and western regions are relatively high and short, respectively, indicate that the rainfall recharge effect in these regions is relatively larger due to the gentle slope of topography compared to that in the southern and northern regions.
To investigate groundwater variation characteristics in the Hancheon watershed, Jeju Island, an integrated hydrologic component analysis was carried out. For this purpose, SWAT-MODFLOW which is an integrated surface-groundwater model was applied to the watershed for continuous watershed hydrologic analysis as well as groundwater modeling. First, ephemeral stream characteristics of Hancheon watershed can be clearly simulated which is unlikely to be shown by a general watershed hydrologic model. Second, the temporally varied groundwater recharge can be properly obtained from SWAT and then spatially distributed groundwater recharge can be made by MODFLOW. Finally, the groundwater level variation was simulated with distributed groundwater pumping data. Since accurate recharge as well as abstraction can be reflected into the groundwater modeling, more realistic hydrologic component analysis and groundwater modeling could be possible.
The variation of groundwater level in Jeju Island is analyzed with the data of precipitation observed from 48 monitoring post and groundwater level observed from 84 monitoring wells during 2001 to 2009. The groundwater level rises in summer and falls in winter. The rise of groundwater level by precipitation is fast and small in the eastern region and slow and large in the western region. However, the speed of fall during the period of no rain is slower in the eastern region than in the western region. It tells that permeability is greater in the eastern region than in the western region. In this paper, we set up the base level of groundwater and calculate recharge volume between the base level and groundwater surface. During the period, the average recharge volume was 9.83 ×109㎥ and the maximum recharge volume was 2.667 ×1010㎥ after the typhoon Nari. With these volume and the recharge masses obtained by applying the recharge ratio of 46.1%, estimated by Jeju Province (2003), the porous ratio over the whole Jeju Island is 16.8% in average and 4.6% in the case of maximum recharge volume just after typhoon Nari. A large difference in the two ratios is because that it takes time for groundwater permeated through the ground just after rain fall to fill up the empty porous part. Although the porous ratios over the whole Jeju Island obtained in this way has a large error, they give us the advantage to roughly estimate the amount of recharged groundwater mass directly from observing the groundwater level.