국내 중·저준위 방사성폐기물은 영구적 격리를 위해 처분장에 매립하고 있으며 그 위치는 경주에 있다. 이러한 방 사성폐기물의 영구적인 격리를 위한 처분시설은 공학적 방벽과 자연 방벽으로 구성되어 있으며 자연 방벽을 특성을 파악 하기 위하여 한국원자력환경공단에서는 2006년부터 부지특성조사를 수행하였고, 이후 부지감시 및 조사계획에 따른 감시 를 수행하여 부지특성의 변화를 지속적으로 확인하고 있다. 중저준위 방폐장의 수리지화학적 환경은 자연 방벽의 평가를 위해 중요한 요소로 손꼽히고 있으나 동해와 가까운 경주의 지역적 특성상 해수의 영향을 반드시 고려해야 한다. 따라서 본 연구에서는 처분 부지의 지하수 관정 7개 및 관정의 심도별 수질 자료를 취합해 지하수 자료 총 30개를 해수 2개소와 비교 분석하여 수리지화학적 환경을 해석하였다. 분석 자료는 수질 10개 항목(온도, EC, HCO3, Na, K, Ca, Mg, Cl, SO4, SiO2)을 2017년 3분기부터 2022년 3분기까지 총 5년간 20회의 자료를 활용하였다. 특히, EC, HCO3, Na, Cl의 농도 변화 를 통해 연구 지역의 배경 농도 및 관정의 구간별 해수의 영향을 파악하였으며, 시계열 군집 분석을 통해 담수, 기수, 해 수의 분류를 시도하였다. 그 결과, 기존의 모니터링 방법으로는 확인하지 못한 부지내 수리지화학적 변화를 제시하였다.
Concrete is the primary building material for nuclear facilities, making it one of the most common forms of radioactive waste generated when decommissioning a nuclear facility. Of the total waste generated at the Connecticut Yankee and Maine Yankee nuclear power plants in the United States, concrete waste accounts for 83.5% of the total for Connecticut Yankee and 52% for Maine Yankee. In order to dispose of the low- to medium-level radioactive concrete waste generated during the decommissioning of nuclear power plants, it is necessary to analyze the radioactivity concentration of gamma nuclides such as Co-58, Co-60, Cs-137, and Ce-144. Gamma-ray spectroscopy is commonly used method to measure the radioactivity concentration of gamma nuclides in the radioactive waste; however, due to the nature of gamma detectors, gamma rays from sequentially decaying nuclides such as Co-60 or Y-88 are subject to True Coincidence Summing (TCS). TCS reduces the Full Energy Peak Efficiency (FEPE) of specific gamma ray and it can cause underestimation of radioactivity concentration. Therefor the TCS effect must be compensated for in order to accurately assess the radioactivity of the sample. In addition, samples with high density and large volume will experience a certain level of self-shielding effect of gamma rays, so this must also be compensated for. The Radioactive Waste Chemical Analysis Center at the Korea Atomic Energy Research Institute performs nuclide analysis for the final disposal of low- and intermediate-level concrete waste. Since a large number of samples must be analyzed within the facility, the analytical method must simultaneously satisfy accuracy and speed. In this study, we report on the results of evaluating the accuracy of the radioactivity concentration correction by applying an efficiency transfer method that appears to satisfy these requirements to concrete standard reference material.
As unit 1 of Kori was permanently shut down in June 2017, domestic nuclear industry has entered the path of decommissioning. The most important thing in decommissioning is cost reduction. And volume reduction of radioactive waste is especially important. According to the IAEA report, more than 4,000 tons of metallic waste is generated during the decommissioning of a 1,000 MWe reactor and most of these wastes are LLW or VLLW. To reduce amount of metallic waste dramatically, we should choose efficient decontamination method. In this study, we conducted dry ice and bead blasting decontamination. We prepared Inconel-600 and STS-304 specimen with dimensions of 30 mm × 30 mm × 5 mm. Loose and fixed contamination was applied on the surface of specimen using SIMCON method. Bead and dry-ice blasting was conducted by spraying alumina and dry ice pellet at the same pressure and distance for the same time. The removal of loose contamination was observed using microscope. It was found that contaminants are significantly removed using both dry ice blasting and bead blasting. However, some abrasive material remained on the surface of specimen. The removal of fixed contamination was verified by weight comparison before and after experiment and cobalt concentration comparison before and after experiment using X-ray Fluorescence Spectroscope (XRF). At least 90% of the cobalt was removed, but some abrasive particle was also remained on the surface of specimen. In this study, it is confirmed that the effectiveness of manufacturing a large-scale abrasive decontamination facility, and it is expected that this technology can be used to effectively reduce the amount of metallic waste generated during decommissioning.
Every engineering decision in radioactive waste management should be based on both technical and economic considerations. Especially, the management of low-level radioactive waste (LLW) is more critical on economic concerns, due to its long-term and continuous nature, which emphasizes the importance of economic analysis. In this study, economic factors for LLW management were discussed with appropriate engineering applications. Two major factors that should be taken into account when assessing economic expectations are the accuracy of the results and its proper balancing with ALARA philosophy (As Low As Reasonably Achievable). The accuracy of the results depends on the correct application of alternatives within a realistic framework of waste processing. This is because the LLW management process involves variables such as component type, physical dimensions, and the monetary value at the processing date. Two commonly used alternatives are the simplified lump sum present worth and levelized annual cost methods, which are based on annual and capital costs. However, these discussions on alternatives not only pertain to the time series value of operational costs but also to future technical advancements, which are crucial for engineers. As new research results on LLW treatment emerge, proper consideration and adoption should be given to technical cost management. As safety is the core value of the entire nuclear industry, the ALARA philosophy should also be considered in the cost management of LLW. The typical cost of exposure in man-rem has ranged from $1,000 to $20,000 over the past decades. However, with increasing concerns about health and international political threats, the cost of man-rem should be subject to stricter criteria, even the balancing of costs and safety concerns is much controverse issue. Throughout the study, the importance of incorporating proper engineering insights into the assessment of technical value for the financial management of LLW was discussed. However, it’s essential to remember that financial management should not be solely assessed based on the size of expenses but rather by evaluating the current financial status, the value of money at the time, and anticipated future costs, considering the specific context and timeframe.
This study introduces the licensing process carried out by the regulatory body for construction and operation of the 2nd phase low level radioactive waste disposal facility in Gyeongju. Also, this study presents the experience and lessons learned from this regulatory review for preparing the license review for the next 3rd phase landfill disposal facility. Korea Radioactive Waste Agency (KORAD) submitted a license application to Nuclear Safety and Security commission (NSSC) on December 24, 2015 to obtain permit for construction and operation of the national engineered shallow land disposal facility at Wolsong, Gyeongju. NSSC and Korea Institute of Nuclear Safety (KINS) started the regulatory review process with an initial docket review of the KORAD application including Safety Analysis Report, Radiological Environmental Report and Safety Administration Rules. After reflecting the results of the docket review, the safety review of revised 10 application documents began on November 29, 2016. Total 856 queries and requests for additional information were elicited by thorough technical review until November 16, 2021. As the Gyeongju and Pohang earthquakes occurred in September 2016 and November 2017, respectively, the seismic design of the disposal facility for vault and underground gallery was enhanced from 0.2 g to 0.3 g and the site safety evaluation including groundwater characteristics was re-investigated due to earthquake-induced fault. Also, post-closure safety assessments related to normal/abnormal/human intrusion scenarios were re-performed for reflecting the results of site and design characteristics. Finally, NSSC decided to grant a license of the 2nd phase low level radioactive waste disposal facility under the Nuclear Safety Laws in July 2022. This study introduces important issues and major improvements in terms of safety during the review process and presents the lessons learned from the experience of regulatory review process.
According to the ‘Regulations on the Delivery of Low and Medium Level Radioactive Waste’, Notification No. 2021-26 of the Nuclear Safety and Security Commission, a history of radioactive waste and a total amount of radioactivity in a drum are mandatory. At this time, the inventory of radionuclides that make up more than 95% of the total radioactivity contained in the waste drum should be identified, including the radioactivity of H-3, C-14, Fe-55, Co-58, Co-60, Ni-59, Ni-63, Sr- 90, Nb-94, Tc-99, I-129, Cs-137, Ce-144, and total alpha. Among nuclides to be identified, gamma-emitting nuclides are usually analyzed with a gamma ray spectrometer such as HPGe. When a specific gamma-ray is measured with a detector, several types of peaks generated by recombination or scattering of electrons are simultaneously detected in addition to the corresponding gamma-ray in gamma-ray spectroscopy. Among them, the full energy peak efficiency (FEPE) with the total gamma energy is used for equipment calibration. However, this total energy peak efficiency may not be accurately measured due to the coincidence summing effect. There are two types of coincidence summing: Random and True. The random coincidence summing occurs when two or more gamma particles emitted from multiple nuclides are simultaneously absorbed within the dead time of the detector, and this effect becomes stronger as the counting rate increases. The true coincidence summing is caused by simultaneous absorption of gamma particles emitted by two or more consecutive energy levels transitioning from single nuclide within the dead time of the detector. This effect is independent of the counting rate but affected by the geometry and absolute efficiency of the detector. The FEPE decreases and the peak count of region where the energy of gamma particles is combined increases when the coincidence summing occurs. At the Radioactive Waste Chemical Analysis Center, KAERI, samples with a dead time of 5% or more are diluted and re-measured in order to reduce the random coincidence summing when evaluating the gamma nuclide inventory of radioactive waste. In addition, a certain distance is placed between the sample and the detector during measurement to reduce the true coincidence summing. In this study, we evaluate the coincidence summing effect in our apparatus for the measurement of radioactive waste samples.
Korea Radioactive Waste Agency (KORAD), regulatory body and civic groups are calling for an infrastructure system that can more systematically and safely manage data on the results of radioactive waste sampling and nuclide analysis in accordance with radioactive waste disposal standards. To solve this problem, a study has been conducted on the analysis of the nuclide pattern of radioactive waste on the nuclide data contained in low-and intermediate-level radioactive waste. This paper will explain the optimal repackaged algorithm for reducing radioactive waste based on previous research results. The optimal repackaged algorithm for radioactive waste reduction is comprised based on nuclide pattern association indicators, classification by nuclide level of small-packaged waste, and nuclide concentration. Optimization simulation is carried out in the order of deriving nuclide concentration by small-packaged, normalizing drum minimization as a function of purpose, normalizing constraints, and optimization. Two scenarios were applied to the simulation. In Scenario 1 (generating facilities and repackaged by medium classification without optimization), it was assumed that there are 886 low-level drums and 52 very low-level drums. In Scenario 2 (generating facilities and repackaged by medium classification with optimization), 708 and 230 drums were assigned to the low-level and very low-level drums, respectively. As a result of the simulation, when repackaged in consideration of the nuclide concentration and constraints according to the generating facility cluster & middle classification by small package (Scenario 2) the low-level drum had the effect of reducing 178 drums from the baseline value of 886 drums to 708 drums. It was found that the reduced packages were moved to the very low-level drum. The system that manages the full life-cycle of radioactive waste can be operated effectively only when the function of predicting or tracking the occurrence of radioactive waste drums from the source of radioactive waste to the disposal site is secured. If the main factors affecting the concentration and pattern of nuclides are systematically managed through these systems, the system will be used as a useful tool for policy decisions that can prevent human error and drastically reduce the generation of disposable drums.
경주 방폐물 처분시설의 1단계 시설로 건설된 지하 사일로 구조는 2014년에 10만 드럼 규모로 완공되어 현재 운영중에 있다. 지하 사일로 구조는 지름 25m, 높이 50m로써 방폐물을 저장하는 실린더부분과 돔 부분으로 구성되어 있으며, 돔부분은 운영터널과 연결 되는 하부 돔 부분과 상부 돔 부분으로 구분할 수 있다. 지하 사일로 구조의 벽체는 철근콘크리트 라이너이고, 두께는 약 1m이다. 본 논문에서는 지하 사일로 구조의 건설과정 및 운영과정의 단계별 유한요소해석을 수행하였다. SMAP-3D 프로그램을 사용하여 2차원 축대칭 유한요소해석을 수행하였다. 2차원 축대칭 유한요소모델의 신뢰성을 검토하고자 3차원 유한요소해석도 수행하였다. 본 논문 에서는 지하 사일로 구조의 구조거동을 분석하고 구조적 안전성을 검토결과를 제시하였다.
The mechanical safety of the container designed according to the IP-2 type technology standard was analyzed for the temporary storage and transportation of Very-Low-Level-Waste (VLLW) for liquid occurring at the nuclear facilities decommissioning site. The container was designed and manufactured as a composite shielding container with the effect of storing and shielding liquid radioactive waste using High Density Polyethylene (HDPE) and eco-friendly shielding material (BaSO4) with corrosion and chemical resistance. The main material of the composite shielding container is HDPE and BaSO4, the material of the cover, cage and pallet is SUS304, and the angle guard is elastic rubber. The test and analysis requirements were analyzed for structural analysis of container drop and lamination test. As test requirements for IP-2 type transport containers should be verified by performing drop and lamination tests. There should be no loss or dispersion of contents through the 1.2 m high free-fall drop and lamination test for a load five times the amount of transported material. ABAQUS/Explicit, a commercial finite element analysis program, was used for structural analysis of the drop and lamination test of the transport and storage container. (Drop test) It was confirmed that the container was most affected when it falls from a 45-degree slope. Although plastic deformation was observed at the edge axis of the cover, it was evaluated that the range of plastic deformation was limited to the cover and cage, and stress within the elastic limit occurred in the inner container. In the analysis results for other falling direction conditions, it was evaluated that stress within the elastic limit was generated in the inner container except for minor plastic deformation. In the case of on-site simulation evaluation, deformation of the inner container and frame due to the drop impact occurred, but leakage and loss of contents, which are major evaluation indicators, did not occur. (Lamination test) The maximum stress was calculated to be 19.9 MPa under the lamination condition for a load 5 times the container weight, and the maximum stress point appeared at the corner axis of the pallet. The calculated value for the maximum stress is about 10%, assuming the conservative yield strength of SUS304 is 200 MPa. It was evaluated that stress within the limit occurred. In the case of on-site simulation evaluation, it was confirmed that there was no container deformation or loss of contents due to the load.
The structural safety of prototype transport and storage containers for very low-level radioactive liquid waste was experimentally estimated for its localization development. Transport containers for radioactive liquid waste have been researched and developed, however, there are no standardized commercial containers for very low-level radioactive waste in Korea. In this study, the structural safety of the designated IP-2 type container capable of transporting and temporarily storing large amounts of very low-level liquid waste, which is generated during the operation and decommissioning of nuclear power plants, was demonstrated. The stacking and drop tests, which were conducted to determine the structural integrity of the container, verified that there was no external leakage of the contents in spite of its structural deformation due to the drop impact. This study shows the effort required for the localization of the technology used in manufacturing transport and storage containers for very low-level radioactive liquid waste, and the additional structural reinforcement of the container in which the commercial intermediate bulk container (IBC) external frame was coupled.
In this study, the well-known non-destructive acoustic emission (AE) and electrical resistivity methods were employed to predict quantitative damage in the silo structure of the Wolsong Low and Intermediate Level Radioactive Waste Disposal Center (WLDC), Gyeongju, South Korea. Brazilian tensile test was conducted with a fully saturated specimen with a composition identical to that of the WLDC silo concrete. Bi-axial strain gauges, AE sensors, and electrodes were attached to the surface of the specimen to monitor changes. Both the AE hit and electrical resistance values helped in the anticipation of imminent specimen failure, which was further confirmed using a strain gauge. The quantitative damage (or damage variable) was defined according to the AE hits and electrical resistance and analyzed with stress ratio variations. Approximately 75% of the damage occurred when the stress ratio exceeded 0.5. Quantitative damage from AE hits and electrical resistance showed a good correlation (R = 0.988, RMSE = 0.044). This implies that AE and electrical resistivity can be complementarily used for damage assessment of the structure. In future, damage to dry and heated specimens will be examined using AE hits and electrical resistance, and the results will be compared with those from this study.
A safety assessment of radioactive waste repositories is a mandatory requirement process because there are possible radiological hazards owing to radionuclide migration from radioactive waste to the biosphere. For a reliable safety assessment, it is important to establish a parameter database that reflects the site-specific characteristics of the disposal facility and repository site. From this perspective, solubility, a major geochemical parameter, has been chosen as an important parameter for modeling the migration behavior of radionuclides. The solubilities were derived for Am, Ni, Tc, and U, which were major radionuclides in this study, and on-site groundwater data reflecting the operational conditions of the Gyeongju low and intermediate level radioactive waste (LILW) repository were applied to reflect the site-specific characteristics. The radiation dose was derived by applying the solubility and radionuclide inventory data to the RESRAD-OFFSITE code, and sensitivity analysis of the dose according to the solubility variation was performed. As a result, owing to the low amount of radionuclide inventory, the dose variation was insignificant. The derived solubility can be used as the main input data for the safety assessment of the Gyeongju LILW repository in the future.
As an example of research activities in decontamination for decommissioning, new data are presented on the options for corrosion layer dissolution during the decommissioning decontamination, or persulfate regeneration for decontamination solutions re-use. For the management of spent decontamination solutions, new method based on solvent extraction of radionuclides into ionic liquid followed by electrodeposition of the radionuclides has been developed. Fields of applications of composite inorganic-organic absorbers or solid extractants with polyacrylonitrile (PAN) binding matrix for the treatment of liquid radioactive waste are reviewed; a method for americium separation from the boric acid containing NPP evaporator concentrates based on the TODGA-PAN material is discussed in more detail. Performance of a model of radionuclide transport, developed and implemented within the GoldSim programming environment, for the safety studies of the LLW/ILW repository is demonstrated on the specific case of the Richard repository (Czech Republic). Continuation and even broadening of these activities are expected in connection with the approaching end of the lifespan of the first blocks of the Czech NPPs.