검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 245

        7.
        2025.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        과도한 조류 발생은 수생태계 교란과 수질 악화를 초래하는 대표적인 환경 문제로, 효과적인 관리와 대응을 위해 정확한 예측이 필요하다. 우리나라는 사계절의 기후 특성이 뚜렷하며, 수온이 상승하는 하절기에 조류 발생이 집중되는 경향을 보인다. 이에 따라 실시간 모니터링 자료는 대부분 저농도 상태가 유지되어 데이터 불균형 문제가 발생한다. 본 연구에서는 chlorophyll-a 농도를 기준으로 하천 현장의 조류 발생 수준을 Class 1 (Chl-a ≤ 10 ㎍/L), Class 2 (10 < Chl-a ≤ 50 ㎍/L), Class 3 (Chl-a > 50 ㎍/L)와 같이 3개의 class로 구분하고, 대표적인 앙상블 머신러닝 모형인 extreme gradient boosting (XGB) 알고리즘을 이용하여 조류 발생 수준을 예측하는 분류 모형을 구축하였다. 데이터 불균형 해소를 위해 생성형 인공지능 기반 알고리즘인 conditional generative adversarial network (CGAN)과 전통적인 데이터 보강 알고리즘인 synthetic minority over-sampling technique (SMOTE), 그리고 딥러닝 기반 기법인 autoencoder (AE)를 활용한 3가지 데이터 보강 알고리즘을 활용하여 데이터의 불균형을 개선한 자료를 생성하고 이를 XGB 모형에 적용하여 성능 변화를 비교하였다. 분석 결과 macro average 기준으로 원본 데이터를 사용한 모형의 recall은 0.606이었으나 SMOTE, AE 및 CGAN의 recall은 각각 0.666, 0.682, 0.720으로 크게 개선되었고, F1 score도 데이터 불균형 해소를 통해 약 7–13%의 성능이 향상되는 등 전체적으로 데이터 불균형 해소로 모형의 성능이 향상되었으며 CGAN이 가장 우수한 성능 개선 효과를 보이는 것으로 나타냈다. 본 연구의 결과를 통해 데이터 불균형 해소를 통한 머신러닝 모형 성능 개선 가능성을 확인하였다.
        4,300원
        8.
        2025.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 Romanoff(1957)의 실측 데이터를 사용하여 머신러닝 기반 상수도관의 부식 깊이를 예측하였다. 이를 실제 상수도관망에 적용하여 누적피해도를 분석하였다. 예측한 부식깊이를 사용하여 누적피해도를 분석하였으며 MCS(Monte Carlo Simulation)를 적용한 누적피해도와 비교 분석하였다. 부식깊이 예측모델에 따른 부식깊이를 분석한 결과 MLP-ReLU 모델이 가장 부식속도가 가장 빠르며 MLP-sigmoid가 가장 부식속도가 느렸다. 천안시 신방동과 성환읍 상수도관망에 MCS를 적용한 누적피해도 분석법과 머신러닝을 적용한 누적피해도를 비교 분석하였다. 신방동에서는 두 분석법 모두 2번 상수도관이 먼저 사용 한계에 도달하였으며 성환읍에서는 4번 상수도관이 가장 먼저 사용 한계에 도달하였다. 사용 한계에 가장 먼저 도달한 상수도관은 다른 상수도관보다 사용 년수가 오래되었거나 수압이 높은 것으로 확인되었다. MCS를 적용한 누적피해도 분석 결과 신방동의 경우 45년 만에 사용 한계를 초과한 반면 성환읍의 경우 47년 만에 사용 한계를 초과했다.
        4,300원
        9.
        2025.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        강화학습은 지속적으로 변화하는 환경에서 최적의 해결책을 제시할 수 있도록 구현되는 머신러닝 알고리즘으로 시간 및 조건에 따라 변화하는 시스템의 최적화에 우수한 성능을 보이는 장점을 가지고 있다. 따라서, 최근 운영 조건과 시간에 따라 변화하는 상하수도 시설 및 취수원 등 현장 물환경 관리 최적화에 강화학습을 적용하기 위한 연구에 대한 관심이 높아지고 있다. 본 연구에서는 강화학습이 상하수도 시설 및 물환경 관리에 적용된 사례를 분석하였다. 상하수도 시설의 운영시 시설 운영의 목적에 맞는 처리수 수질을 유지하면서 운영에 필요한 에너지 소비 및 비용을 최소화하는 노력이 중요하다. 강화학습은 데이터에 기반한 반복적인 분석을 통해 시스템 운영의 최적 조건을 학습할 수 있으며, 다양한 연구 사례에서 강화학습의 적용을 통해 상하수도 시설 등의 운영 효율 개선이 가능함을 보여주었다. 하수처리 시설의 경우 강화학습을 활용하여 운영비의 많은 부분을 차지하는 폭기조 산소 공급과 내부 반송 펌프 운전을 최적화할 수 있으며, 정수장의 경우 약품 투입량 절감 등을 통해 운영비 절감 효과를 달성할 수 있음을 확인하였다. 또한, 용수 공급망과 저류조 운영의 최적화를 통해 상수도 및 하천 현장의 오염 발생을 저감할 수 있음을 알 수 있었다. 본 연구를 통해 강화학습을 활용하여 기존의 경험에 기반한 시설 운영 방식의 한계를 개선하고 상하수도 시설 운영 및 물환경 관리 효율 향상에 기여할 수 있음을 확인하였다
        4,600원
        10.
        2025.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study developed a QSAR regression model using the XGBoost machine learning algorithm to predict the acute aquatic toxicity of highly hazardous PCBs. EC50 values for Daphnia magna were obtained from QSAR Toolbox 4.7. Input features consisted of approximately 3,000 molecular descriptors and fingerprints generated from official structure data using RDKit and the Morgan algorithm, excluding mixtures. The dataset was split into training and test sets (7 : 3) based on 500,000 randomized seeds, and the most balanced combination was selected using Kolmogorov-Smirnov and Wilcoxon rank-sum tests. Z-score standardization was applied based on the training set, and the XGBoost model was trained using 5-fold cross-validation with grid search optimization. The final model showed excellent predictive performance (R2 =0.97, RMSE= 0.19). A simplified model using only the top 10 predictive molecular features retained approximately 95% of the original accuracy while improving interpretability and efficiency. The model was applied to 38 PCB compounds lacking EC50 values, and the predicted values showed a statistically similar distribution to the measured group, with only minor differences in a few structural fingerprints. These results demonstrate the applicability of XGBoost-based models for reliable toxicity prediction and offer a promising alternative approach for assessing the environmental risk of untested PCBs.
        4,000원
        11.
        2025.09 KCI 등재후보 구독 인증기관 무료, 개인회원 유료
        In this study, chemicals with acute toxicity experimental data were selected as research subjects, and compareed the model derived from statistical analysis and QSAR open-source programs. The physical and chemical properties, dynamic behaviors, and toxicological estimates of the chemicals were calculated using Mordred, a molecular descriptor calculation program based on RDKit. LD50 was set as the toxicity comparison target for each chemical, and independent variables or factors with similarity to independent variables were estimated from the molecular descriptors calculated through Mordred. Molecule descriptors composed of independent variables were compared to predictions from QSAR open-source models, A regression model was created with the selected molecule descriptors and compared with predictions from QSAR programs, confirming high accuracy for specific functional groups. The QSAR model created in this study considers the characteristics and experimental values of each chemical, and provides evidence for selecting variables when constructing toxicity data for machine learning applications.
        4,000원
        15.
        2025.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        목적 : 본 연구는 지역사회 거주 장애 노인을 대상으로 개인-환경 간 상호작용을 반영한 거주 적합성(Livability) 평가에 기반하여 결정 트리 기반 머신러닝 알고리즘의 결과를 활용하여 가정환경 수정 중재를 제공하고 효과성을 검증하고자 하 였다. 연구방법 : 연구참여자는 지역사회 거주 장애 노인 9명이었으며, 중재는 총 4회기(주 1회, 40분)로 구성되었다. 거주 적합 성(Livability Scale), 작업수행능력(COPM), 목표성취(GAS), 삶의 질(WHOQOL-BREF)은 사전, 사후, 추적의 세 시점 에서 평가되었으며, 추적 평가는 중재 종료 3개월 후에 실시되었다. 중재는 Livability Scale을 활용하여 결정 트리 기반 머신러닝 알고리즘(Random Forest)을 활용한 변수 중요도(feature importance)로 거주 부적합 항목을 식별하여 중재의 우선순위로 활용하였다. 분석은 세 시점에서 반복측정된 자료를 SPSS 26.0을 사용하여 Friedman 검정 및 Bonferroni 사후 비교를 통해 분석하였다. 결과 : 분석 결과, 거주 적합성의 환경, 작업, 수행 영역과 작업수행능력, 목표성취도, 삶의 질의 하위 영역에서 통계적으 로 유의미한 향상이 나타났다. COPM 만족도는 모든 시점에서 유의하게 증가하여 중재 효과의 지속 가능성을 확인하였다. 결론 : 가정환경 수정에서 개인–환경 상호작용을 반영한 정량적 평가와 머신러닝 기반의 예측 모형을 활용하여 중재의 실 효성을 높일 수 있는 실증적 근거를 제공한다. 이를 통해 장애 노인을 포함한 다양한 취약계층을 위한 맞춤형 주거 중재 및 정책 개발에 기초자료로 활용될 수 있을 것이다.
        4,900원
        16.
        2025.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study proposes a methodology for predicting the physical properties such as the density of polymer composites, including asphalt binders, and evaluates its feasibility by identifying the quantitative relationship between the structure and properties of individual polymers. To this end, features are constructed using molecular dynamics (MD) simulation results and descriptor calculation tools. This study investigates the changes in the calculated density depending on the characteristics of the training dataset and analyzes the feature characteristics across datasets to identify key features. In this study, 2,415 hydrocarbon and binder-derived polymer molecules were analyzed using MD simulations and 2,790 chemical descriptors generated using alvaDesc. The features were pre-processed using correlation filtering, PCA, and recursive feature elimination. The XGBoost models were trained using k-fold cross-validation and Optuna optimization. SHAP analysis was used to interpret feature contributions. The variables influencing the density prediction differed between the hydrocarbon and binder groups. However, the hydrogen atom count (H), van der Waals energy, and descriptors such as SpMAD_EA_LboR consistently had a strong impact. The trained models achieved high accuracy (R² > 0.99) across different datasets, and the SHAP results revealed that the edge adjacency, topological, and 3D geometrical descriptors were critical. In terms of predictive accuracy and interpretability, the integrated MDQSPR framework demonstrated high reliability for estimating the properties of individual binder polymers. This approach contributed to a molecular-level understanding and facilitated the development of ecofriendly and efficient modifiers for asphalt binders.
        4,200원
        18.
        2025.07 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        As demand grows for electric vehicles and advanced mobility technologies, developing materials for permanent magnets has become increasingly essential. Among them, SmCo-based permanent magnets are gaining attention due to their superior thermal stability compared to conventional NdFeB magnets, making them promising candidates for high-temperature motor applications. However, optimizing the magnetic properties of SmCo alloys remains challenging due to their complex phase structures and elemental interactions. In this study, we develop and optimize machine learning (ML) models to predict the saturation magnetization of SmCo permanent magnets using only composition-based descriptors. A dataset comprising various SmCo alloys was analyzed, with features extracted using Matminer and Pymatgen modules. We applied Random Forest (RF), eXtreme Gradient Boosting (XGB), and Support Vector Regression (SVR) models and compared their regression performance using R2 score and Root-mean-squared-error (RMSE). The RF model demonstrated the best generalization and prediction accuracy. To identify the most influential features, we used permutation feature importance. Further, we refined the feature set using a genetic algorithm (GA), ultimately selecting 9 key features that yielded the highest model performance (R2 = 0.963, RMSE = 4.22 emu/g). This study highlights the potential of combining machine learning with genetic optimization to accelerate the design of high-performance, thermally stable SmCo permanent magnets.
        4,000원
        19.
        2025.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        High-entropy alloys (HEAs) exhibit complex phase formation behavior, challenging conventional predictive methods. This study presents a machine learning (ML) framework for phase prediction in HEAs, using a curated dataset of 648 experimentally characterized compositions and features derived from thermodynamic and electronic descriptors. Three classifiers—random forest, gradient boosting, and CatBoost—were trained and validated through cross-validation and testing. Gradient boosting achieved the highest accuracy, and valence electron concentration (VEC), atomic size mismatch (δ), and enthalpy of mixing (ΔHmix) were identified as the most influential features. The model predictions were experimentally verified using a non-equiatomic Al30Cu17.5Fe17.5Cr17.5Mn17.5 alloy and the equiatomic Cantor alloy (CoCrFeMnNi), both of which showed strong agreement with predicted phase structures. The results demonstrate that combining physically informed feature engineering with ML enables accurate and generalizable phase prediction, supporting accelerated HEA design.
        4,200원
        20.
        2025.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 환경 요인을 바탕으로 절화용 국화 생장 예측을 위한 최적의 모델을 개발하는 것을 목표로 하였다. 이를 위해 13개의 모델(Linear Regression, Lasso Regression, Ridge Regression, ElasticNet Regression, K-Nearest Neighbors (KNN), Support Vector Regression (SVR), Neural Network, Decision Tree, Random Forest, XGBoost, AdaBoost, CatBoost, Stacking)의 성능을 R2, MAE, RMSE를 평가 지표 로 비교하였다. 단일 모델 중에서는 Decision Tree가 가장 우수한 성능을 보였으며, R2값은 0.90에서 0.91 사이였다. 앙 상블 모델 중에서는 CatBoost가 가장 높은 성능을 보였으며 (R2=0.90~0.92) Random Forest와 XGBoost 또한 유사한 성 능을 보였다. 전체적으로 트리 기반 앙상블 모델이 국화 생장 예측에 적합한 모델로 나타났다.
        4,000원
        1 2 3 4 5