Photocatalytically splitting water into hydrogen upon semiconductors has tremendous potential for alleviating environmental and energy crisis issues. There is increasing attention on improving solar light utilization and engineering photogenerated charge transfer of TiO2 photocatalyst because it has advantages of low cost, non-toxicity, and high chemical stability. Herein, oxygen vacancies and cocatalysts (Cu and MoS2) were simultaneously introduced into TiO2 nanoparticles from protonic titanate by a one-pot solvothermal method. The composition and structure characterization confirmed that the pristine TiO2 nanoparticle was rich in oxygen vacancies. The photocatalytic performances of the composites were evaluated by solar-tohydrogen evolution test. The results revealed that both Cu-TiO2 and MoS2- TiO2 could improve the photocatalytic hydrogen evolution ability. Among them, 0.8% Cu-TiO2 showed the best hydrogen evolution rate of 7245.01 μmol·g−1·h−1, which was 3.57 and 1.34 times of 1.25% MoS2- TiO2 (2726.22 μmol·g−1·h−1) and pristine TiO2 material (2028.46 μmol·g−1·h−1), respectively. These two kinds of composites also had good stability for hydrogen evolution. Combined with the results of photocurrent density and electrochemical impedance spectra, the incorporation of oxygen vacancies and cocatalysts (Cu and MoS2) could not only enhance the light-harvesting of TiO2 but also improve the separation and transfer capabilities of light-induced charge carriers, thus promoting water splitting to hydrogen.
The intensive development of the petrochemical industry globally reflects the necessity of an efficient approach for oily sludge and wastewater. Hence, for the first time, the current study utilized magnetic waxy diesel sludge (MWOPS) to synthesize activated carbon coated with TiO2 particles for the removal of total petroleum hydrocarbons (TPH) and COD from oily petroleum wastewater (OPW). The photocatalyst was characterized using CHNOS, elemental analysis was performed using X-ray fluorescence spectroscopy (XRF), field emission scanning electron microscope (FESEM), high-resolution transmission electron microscope (HR-TEM), X-ray diffraction analysis (XRD), Fourier transform infrared spectrometer (FTIR), Raman, energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), MAP thermo-gravimetric analysis/ differential thermo-gravimetric (TGA–DTG), Brunauer–Emmett–Teller (BET), diffuse reflectance spectroscopy (DRS), and vibrating sample magnetometer (VSM). The optimization of synthesized highly porous AC/Fe3O4/TiO2 photocatalyst was conducted considering the impacts of pH, temperature, photocatalyst dosage, and UVA6W exposure time. The results demonstrated the high capacity of the MWOPS with inherent magnetic potential and desired carbon content for the removal of 91% and 93% of TPH and COD, respectively. The optimum conditions for the OPW treatment were obtained at pH 6.5, photocatalyst dosage of 250 mg, temperature of 35 °C, and UVA6W exposure time of 67.5 min. Moreover, the isotherm/kinetic modeling illustrated simultaneous physisorption and chemisorption on heterogeneous and multilayer surfaces. Notably, the adsorption efficiency of the AC/Fe3O4/TiO2 decreased by 4% after five adsorption/desorption cycles. Accordingly, the application of a well-designed pioneering photocatalyst from the MWOPS provides a cost-effective approach for industry manufacturers for oily wastewater treatment.
In this study, the surfaces of two gold nanoparticles of different shapes were modified with hexadecyltrimethylammonium bromide (CTAB) and used for contact lenses. The polymer was based on 2-hydroxyethyl methacrylate (HEMA), and spherical and sea urchin-shaped gold nanoparticles were used as additives. CTAB was used to modify the surface of the sea urchin-shaped gold nanoparticles. To analyze the physical properties of the prepared contact lens, optical transmittance, refractive index, water content, contact angle, and atomic force microscope (AFM) were measured and evaluated. The results showed the nanoparticles did not significantly affect optical transmittance, refractive index, or water content of the lens, and tensile strength increased according to the ratio of the additive. The addition of the sea urchin-shaped nanoparticles resulted in lower wettability compared with the spherical nanoparticles, but somewhat superior tensile strength. In addition, it was found that the wettability of the lens was improved when the surface-modified sea urchin-shaped gold nanoparticles were added. The types of gold nanoparticles and surface modification methods used in this study are considered to have great potential for use in ophthalmic materials.
To fabricate intermetallic nanoparticles with high oxygen reduction reaction activity, a high-temperature heat treatment of 700 to 1,000 °C is required. This heat treatment provides energy sufficient to induce an atomic rearrangement inside the alloy nanoparticles, increasing the mobility of particles, making them structurally unstable and causing a sintering phenomenon where they agglomerate together naturally. These problems cannot be avoided using a typical heat treatment process that only controls the gas atmosphere and temperature. In this study, as a strategy to overcome the limitations of the existing heat treatment process for the fabrication of intermetallic nanoparticles, we propose an interesting approach, to design a catalyst material structure for heat treatment rather than the process itself. In particular, we introduce a technology that first creates an intermetallic compound structure through a primary high-temperature heat treatment using random alloy particles coated with a carbon shell, and then establishes catalytic active sites by etching the carbon shell using a secondary heat treatment process. By using a carbon shell as a template, nanoparticles with an intermetallic structure can be kept very small while effectively controlling the catalytically active area, thereby creating an optimal alloy catalyst structure for fuel cells.
Nanoparticles are commonly used to avoid the opaque white color of TiO2 based sunscreen. However, a dispersing agent is typically required because of the tendency of the nanoparticles (NPs) to agglomerate. Stearic acid is one kind of dispersing agent often used for sunscreen products. However, according to the MSDS data sheet on stearic acid, stearic acid is highly hazardous to aquatic life and causes irritation on human skin. To avoid this problem, in this study a safer organic dispersing agent extracted from Korean seaweed has been studied to disperse TiO2 nanoparticles, and further use as an active agent in sunscreen products. The presence of phytochemicals in seaweed extract, especially alginate, can disperse TiO2 nanoparticles and improve TiO2 dispersion properties. Results show that seaweed extract can improve the dispersion properties of TiO2 nanoparticles and sunscreen products. Reducing the agglomeration of TiO2 nanoparticles improves sunscreen properties, by making it less opaque white in color, and increasing UV protection value. It was also confirmed that adding seaweed extract into sunscreen products had no irritating effects on the human skin, making it more desirable for cosmetics application.
An optical fluorescence quenching sensor based on functionally modified iron-doped carbon nanoparticles was designed for the selective and sensitive Cr(VI) ion detection. Multifunctional iron-doped carbon nanoparticles were enclosed in the scaffolds of a promising stable nanocarrier system called hyperbranched polyglycerol (HPG), which has been fluorescently modified with 1-pyrene butyric acid using the Steglich esterification procedure. The therapeutic and diagnostic capabilities were boosted when these nanoparticles were enclosed in the fluorescently modified dendritic structure, HPG. Iron-doped carbon nanoparticles coupled with fluorescently modified hyperbranched polyglycerol can be used as a sensor for metal ions and can then be used to successfully remove them from a sample. Moreover, the synthesised nanoparticles demonstrated promising antimicrobial efficacy against bacteria and fungi. These results are also discussed in detail.
As a promising anode for sodium-ion batteries (SIBs), cobalt sulfide ( CoS2) has attracted extensive attention due to its high theoretical capacity, easy preparation, and superior electrochemical activity. However, its intrinsic low conductivity and large volume expansion result in poor cycling ability. Herein, nitrogen-doped carbon-coated CoS2 nanoparticles (N–C@ CoS2) were prepared by a C3N4 soft-template-assisted method. Carbon coating improves the conductivity and prevents the aggregation of CoS2 nanoparticles. In addition, the C3N4 template provides a porous graphene-like structure as a conductive framework, affording a fast and constant transport path for electrons and void space for buffering the volume change of CoS2 nanoparticles. Benefitting from the superiorities, the Na-storage properties of the N–C@CoS2 electrode are remarkably boosted. The advanced anode delivers a long-term capacity of 376.27 mAh g− 1 at 0.1 A g− 1 after 500 cycles. This method can also apply to preparing other metal sulfide materials for SIBs and provides the relevant experimental basis for the further development of energy storage materials.
Decabromodiphenyl ether (BDE209) is a persistent aromatic compound widely associated with environmental pollutants. Given its persistence and possible bioaccumulation, exploring a feasible technique to eradicate BDE209 efficiently is critical for today’s environmentally sustainable societies. Herein, an advanced nanocomposite is elaborately constructed, in which a large number of titanium dioxide ( TiO2) nanoparticles are anchored uniformly on two-dimensional graphene oxide (GO) nanosheets ( TiO2/GO) via a modified Hummer’s method and subsequent solvothermal treatment to achieve efficient photocatalytic degradation BDE209. The obtained TiO2/ GO photocatalyst has excellent photocatalytic due to the intense coupling between conductive GO nanosheets and TiO2 nanoparticles. Under the optimal photocatalytic degradation test conditions, the degradation efficiency of BDE209 is more than 90%. In addition, this study also provides an efficient route for designing highly active catalytic materials.
In this study, gold nanoparticles (AuNPs) were synthesised using green chemistry to decorate multi-walled carbon nanotubes (MWCNTs) made from walnut shells transmission electron microscopy, field-emission scanning electron microscopy (FESEM), atomic force microscopy and fourier transforms infrared spectroscopy were used to diagnose MWCNTs and AuNPs. MWCNT-COOAu, MWCNT-COO and MWCNT-Au were diagnosed by Raman, energy dispersive X-ray analysis and FESEM. The effect of AuNPs, MWCNT-COO, MWCNT-COOAu and MWCNT-Au on pure and serum alkaline phosphatase (ALP) enzyme activity was studied in vitro using the enzyme-substrate 4-nitrophenyl disodium orthophosphate. For pure enzymes, Vmax slightly increased as the concentration of MWCNT-Au, MWCNT-COOAu and MWCNTCOO increased, whereas the Vmax values decreased as the concentration of AuNPs increased. The inhibition type for all NPs varied. For serum ALP enzyme, the Vmax values for Au-based NPs decreased as the concentration of NPs increased. The Vmax values exceeded the standard value at the concentrations of 25, 50 and 75 ppm for MWCNT-Au and MWCNT-COOAu, whereas the Vmax values increased over the standard value for all concentrations of AuNPs.
The ability to both assay the presence of, and to selectively remove ions in a solution is an important tool for waste water treatment in many industrial sectors, especially the nuclear industry. Nuclear waste streams contain high concentrations of heavy metals ions and radionuclides, which are extremely toxic and harmful to the environment, wildlife and humans. For the UK nuclear industry alone, it is estimated that there will be 4.9 million metric tonnes of radioactive waste by 2125, which contains a significant number of toxic radionuclides and heavy metals. This is exacerbated further by increased international growth of nuclear new build and decommissioning. Efforts to remove radionuclides have been focused on the development and optimisation of current separation and sequestering techniques as well as new technologies. Due to the large volumes of waste the techniques must be economical, simple to use and highly efficient in application. Magnetic nanoparticles (MNPs) offer a powerful enhancement of normal ion exchange materials in that they can be navigated to specific places using external magnetic fields and hence can be used to investigate challenges such as, pipework in preparation of decommissioning projects. They also have the potential to be fine-tuned to extract a variety of other radionuclides and toxic heavy metals. It has been demonstrated that with the right functional groups these particles become very strongly selective to radionuclides, such as Uranium. However, this new technology also has the potential to effectively aid nuclear waste remediation at a low cost for the separation of both radionuclides and heavy metals. In this work, we investigate the origin of the selectivity of superparamagnetic iron oxide nanoparticles (SPIONs) to Uranium by making systematic changes to the existing surface chemistry and determining how these changes influence the selectivity. Identifying the mechanism by which selected common nuclear related metals, such as Na(I), K(I), Cs(I), Ca(II), Cu(II), Co(II), Ni(II), Cd(II), Mg(II), Sr(II), Pb(II), Al(III), Mn(II), Eu(III) and Fe(III), are sorbed will allow for specific NP-target (nanoparticle) ion interactions to be revealed. Ultimately this understanding will provide guidance in the design of new targeted NP-ligand constructs for other environmental systems.
A promising approach to enhance catalytic performance of supported heterogeneous nano-metal catalysts is to uniformly disperse active nanoparticles on the support. In this work, N-doped carbon-modified graphene (G@NC) nanosheet is designed and prepared to anchor Pd–Fe bimetallic nanoparticles (Pd–Fe/G@NC). The N-doped carbon modification on graphene surface could construct a sandwich-like structure (G@NC), which not only prevented the re-stacking of graphene nanosheets but also provided confined space for stable anchoring of bimetallic Pd–Fe nanoparticles. Benefitted from the unique structural property and synergetic effect of metal Pd and Fe species, the as-obtained Pd–Fe/G@NC composite displays excellent catalytic activity toward 4-nitrophenol reduction reaction with a turnover frequency of 613.2 min− 1, which is far superior to that of the mono-metal counterparts (Fe/G@NC and Pd/G@NC). More importantly, Pd–Fe/G@NC catalyst also exhibits favorable catalytic performance in the reduction of other nitroaromatic compounds (nitrobenzene, 4-nitrotoluene, 4-chloronitrobenzene, and so on). In addition, Pd–Fe/G@NC can catalyze the oxidation of furfuraldehyde to furoic acid with a high yield of 88.64%. This work provides a new guide for rationally designing and developing advanced supported heterogeneous bimetallic catalyst.