검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 28

        1.
        2022.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We report the synthesis and gas sensing properties of bare and ZnO decorated TeO2 nanowires (NWs). A catalyst assisted-vapor-liquid-solid (VLS) growth method was used to synthesize TeO2 NWs and ZnO decoration was performed using an Au-catalyst assisted-VLS growth method followed by a subsequent heat treatment. Structural and morphological analyses using X-ray diffraction (XRD) and scanning/transmission electron microscopies, respectively, demonstrated the formation of bare and ZnO decorated TeO2 NWs with desired phase and morphology. NO2 gas sensing studies were performed at different temperatures ranging from 50 to 400 oC towards 50 ppm NO2 gas. The results obtained showed that both sensors had their best optimal sensing temperature at 350 oC, while ZnO decorated TeO2 NWs sensor showed much better sensitivity towards NO2 relative to a bare TeO2 NWs gas sensor. The reason for the enhanced sensing performance of the ZnO decorated TeO2 NWs sensor was attributed to the formation of ZnO (n)/ TeO2 (p) heterojunctions and the high intrinsic gas sensing properties of ZnO.
        4,000원
        2.
        2022.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Metal halide perovskite (MHP) nanocrystals (NCs) have emerged as promising materials for various optoelectronic applications including photovoltaics, light-emitting devices, and photodetectors because of their high absorption coefficient, high diffusion length, and photoluminescence quantum yield. However, understanding the morphological evolution of the MHP NCs as well as their controlled assembly into optoelectronic devices is still challenging and will require further investigation of the colloidal chemistry. In this study, we found that the amount of n-octylamine (the capping agent) plays a crucial role in inducing further growth of the MHP NCs into one-dimensional nanowires during the aging process. In addition, we demonstrate that the dielectrophoresis process can permit self-alignment of the MHP nanowires with uniform distribution and orientation on interdigitated electrodes. A strong light-matter interaction in the MHP NWs array was observed under UV illumination, indicating the photo-induced activation of their luminescence and electrical current in the self-aligned MHP nanowire arrays.
        4,000원
        3.
        2021.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We report the growth and enhanced photoelectrochemcial (PEC) water-splitting reactivity of few-layer MoS2 nanosheets on TiO2 nanowires. TiO2 nanowires with lengths of ~1.5 ~ 2.0 μm and widths of ~50~300 nm are synthesized on fluorine-doped tin oxide substrates at 180 oC using hydrothermal methods with Ti(C4H9O)4. Few-layer MoS2 nanosheets with heights of ~250 ~ 300 nm are vertically grown on TiO2 nanowires at a moderate growth temperature of 300 oC using metalorganic chemical vapor deposition. The MoS2 nanosheets on TiO2 nanowires exhibit typical Raman and ultraviolet-visible light absorption spectra corresponding to few-layer thick MoS2. The PEC performance of the MoS2 nanosheet/TiO2 nanowire heterostructure is superior to that of bare TiO2 nanowires. MoS2/TiO2 heterostructure shows three times higher photocurrent than that of bare TiO2 nanowires at 0.6 V. The enhanced PEC photocurrent is attributed to improved light absorption of MoS2 nanosheets and efficient charge separation through the heterojunction. The photoelectrode of the MoS2/TiO2 heterostructure is stably sustained during on-off switching PEC cycle.
        4,000원
        4.
        2021.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Dynamic behavior of piezoelectric ZnO nanowires is investigated using finite element analyses (FEA) on FE models constructed based on previous experimental observations in which nanowires having aspect ratios of 1:2. 1:31, and 1:57 are obtained during a hydrothermal process. Modal analyses predict that nanowires will vibrate in lateral bending, uniaxial elongation/contraction, and twisting (torsion), respectively, for the three ratios. The natural frequency for each vibration mode varies depending on the aspect ratio, while the frequencies are in a range of 7.233 MHz to 3.393 GHz. Subsequent transient response analysis predicts that the nanowires will behave quasi-statically within the load frequency range below 10 MHz, implying that the ZnO nanowires have application potentials as structural members of electromechanical systems including nano piezoelectric generators and piezoelectric dynamic strain sensors. When an electric pulse signal is simulated, it is predicted that the nanowires will deform in accordance with the electric signal. Once the electric signal is removed, the nanowires exhibit a specific resonance-like vibration, with the frequency synchronized to the signal frequency. These predictions indicate that the nanowires have additional application potential as piezoelectric actuators and resonators.
        4,200원
        5.
        2020.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The design and fabrication of catalysts with low-cost and high electrocatalytic activity for the oxygen evolution reaction (OER) have remained challenging because of the sluggish kinetics of this reaction. The key to the pursuit of efficient electrocatalysts is to design them with high surface area and more active sites. In this work, we have successfully synthesized a highly stable and active NiCo2S4 nanowire array on a Ni-foam substrate (NiCo2S4 NW/NF) via a two-step hydrothermal synthesis approach. This NiCo2S4 NW/NF exhibits overpotential as low as 275 mV, delivering a current density of 20 mA cm-2 (versus reversible hydrogen electrode) with a low Tafel slope of 89 mV dec-1 and superior long-term stability for 20 h in 1M KOH electrolyte. The outstanding performance is ascribed to the inherent activity of the binder-free deposited, vertically aligned nanowire structure, which provides a large number of electrochemically active surface sites, accelerating electron transfer, and simultaneously enhancing the diffusion of electrolyte.
        4,000원
        6.
        2018.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Finite element analyses are carried out to understand the piezoelectric behaviors of ZnO nanowires. Three different types of ZnO nanowires, with aspect ratios of 1:2. 1:31, and 1:57, are analyzed for uniaxial compression, pure bending, and buckling. Under the uniaxial compression with a strain of 1.0 × 10−4 as the reference state, it is predicted that all three types of nanowires develop the same magnitude of the piezoelectric fields, which suggests that longer nanowires exhibit higher piezoelectric potential. However, this prediction is not in agreement with the experimental results previously reported in the literature. Such discrepancy is understood when the piezoelectric behaviors under bending and buckling are considered. When only the strain field due to bending is present in bending or buckling, the antisymmetric nature of the through-thickness stain distribution indicates that two piezoelectric fields, the same in magnitude and opposite in sign, develop along the thickness direction, which cancels each other out, resulting in a zero net piezoelectric field. Once additional strain contribution due to axial deformation is superposed on the bending, such field cancelling is compensated for due to the axial component of the piezoelectric field. Such numerical predictions seem to explain the reported experimental results while providing a guideline for the design of nanowire-based piezoelectric devices.
        4,000원
        7.
        2018.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        One-dimensional rutile TiO2 is an important inorganic compound with applicability in sensors, solar cells, and Li-based batteries. However, conventional synthesis methods for TiO2 nanowires are complicated and entail risks of environmental contamination. In this work, we report the growth of TiO2 nanowires on a Ti alloy powder (Ti-6wt%Al- 4wt%V, Ti64) using simple thermal oxidation under a limited supply of O2. The optimum condition for TiO2 nanowire synthesis is studied for variables including temperature, time, and pressure. TiO2 nanowires of ~5 μm in length and 100 nm in thickness are richly synthesized under the optimum condition with single-crystalline rutile phases. The formation of TiO2 nanowires is greatly influenced by synthesis temperature and pressure. The synthesized TiO2 nanowires are characterized using field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), and high-resolution transmission electron microscopy (HR-TEM).
        4,000원
        8.
        2016.03 구독 인증기관 무료, 개인회원 유료
        고성능 투명 전극의 개발은 유기 태양 전지, 유기 발광 다이오드와 같은 저가형 유연 유기 광전자 소자의 개발에 매우 중요하다. 가장 널리 쓰이고 있는 투명전극인 indium tin oxide (ITO)는 비싼 가격과 잘 깨어지는 특성 을 가지고 있어서 저가형 유연 전자 소자의 개발에 많은 제한을 주고 있으며, 이를 극복하기 위한 대체 투명 전극의 개발에 대한 연구가 활발히 진행되고 있다. 은 나노와이어(silver nanowire, AgNW)는 우수한 전기 전도도와 광 투과 도를 가지고 저렴하며 뛰어난 유연성 때문에 ITO의 대체 투명전극으로서 큰 각광을 받고 있다. 그러나 AgNW의 거 친 표면은 유기 광전자 소자의 누설전류를 크게 증가시켜서 소자의 효율을 떨어뜨리기 때문에 이를 극복하는 기술의 개발이 시급한 실정이다. 본 연구에서는 UV 광 경화성 접착제를 이용하여 AgNW를 PET기판으로 transfer 시키는 방법으로 AgNW가 매몰된 유연 전도성 투명 기판을 제작하였으며, 이 기판은 낮은 표면 거칠기, 낮은 면저항과 높은 광투과도를 보여준다. 본 연구에서 개발된 AgNW가 매몰된 유연 전도성 투명 기판은 유기전자소자의 대체투명전극 으로 활용될 수 있는 가능성을 보여준다.
        4,000원
        9.
        2015.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        TiO2 nanowires were grown by thermal oxidation of TiO powder in an oxygen and nitrogen gas environment at 1000 oC. The ratio of O2 to N2 in an ambient gas was changed to investigate the effect of the gas ratio on the growth of TiO2 nanowires. The oxidation process was carried out at different O2/N2 ratios of 0/100, 25/75, 50/50 and 100/0. No nanowires were formed at O2/N2 ratios of less than 25/75. When the O2/N2 ratio was 50/50, nanowires started to form. As the gas ratio increased to 100/0, the diameter and length of the nanowires increased. The X-ray diffraction pattern showed that the nanowires were TiO2 with a rutile crystallographic structure. In the XRD pattern, no peaks from the anatase and brookite structures of TiO2 were observed. The diameter of the nanowires decreased along the growth direction, and no catalytic particles were detected at the tips of the nanowires which suggests that the nanowires were grown with a vapor-solid growth mechanism.
        3,000원
        10.
        2015.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Vertically oriented nickel nanowire arrays with a different diameter and length are synthesized in porous anodic aluminium oxide templates by an electrodeposition method. The pore diameters of the templates are adjusted by controlling the anodization conditions and then they are utilized as templates to grow nickel nanowire arrays. The nickel nanowires have the average diameters of approximately 25 and 260 nm and the crystal structure, morphology and microstructure of the nanowires are systematically investigated using XRD, FE-SEM and TEM analysis. The nickel nanowire arrays show a magnetic anisotropy with the easy axis parallel to the nanowires and the coercivity and remanence enhance with decreasing a wire diameter and increasing a wire length.
        4,000원
        11.
        2014.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We demonstrate a simple and effective method to accurately position silicon nanowires (Si NWs) at desirable locations using drop-casting of Si NW inks; this process is suitable for applications in nanoelectronics or nanophotonics. Si NWs were assembled into a lithographically patterned sacrificial photoresist (PR) template by means of capillary interactions at the solution interface. In this process, we varied the type of solvent of the SiNW-containing solution to investigate different assembly behaviors of Si NWs in different solvents. It was found that the assembly of Si NWs was strongly dependent on the surface energy of the solvents, which leads to different evaporation modes of the Si NW solution. After Si NW assembly, the PR template was cleanly removed by thermal decomposition or chemical dissolution and the Si NWs were transferred onto the underlying substrate, preserving its position without any damage. This method enables the precise control necessary to produce highly integrated NW assemblies on all length scales since assembly template is easily fabricated with top-down lithography and removed in a simple process after bottom-up drop-casting of NWs.
        4,000원
        12.
        2014.08 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We synthesized Fe-doped TiO2/α-Fe2O3 core-shell nanowires(NWs) by means of a co-electrospinning method anddemonstrated their magnetic properties. To investigate the structural, morphological, chemical, and magnetic properties of thesamples, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and X-ray photoelectronspectroscopy were used, as was a vibrating sample magnetometer. The morphology of the nanostructures obtained aftercalcination at 500oC exhibited core/shell NWs consisting of TiO2 in the core region and α-Fe2O3 in the shell region. In addition,the XPS results confirmed the formation of Fe-doped TiO2 by the doping effect of Fe3+ ions into the TiO2 lattice, which canaffect the ferromagnetic properties in the core region. For comparison, pure α-Fe2O3 NWs were also fabricated using anelectrospinning method. With regard to the magnetic properties, the Fe-doped TiO2/α-Fe2O3 core-shell NWs exhibited improvedsaturation magnetization(Ms) of approximately ~2.96emu/g, which is approximately 6.1 times larger than that of pure α-Fe2O3NWs. The performance enhancement can be explained by three main mechanisms: the doping effect of Fe ions into the TiO2lattice, the size effect of the Fe2O3 nanoparticles, and the structural effect of the core-shell nanostructures.
        4,000원
        13.
        2014.07 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Cu2O nanowires were synthesized at large scale on copper plate by thermal oxidation in air. The effect of oxidation time and temperature on the morphology of the nanowires was examined. The oxidation time had no effect on the diameter of the nanowires, while it had a great effect on the density and the length of the nanowires. The density and the length of the nanowires increased, and then decreased, with increasing oxidation time. The oxidation temperature had a tremendous effect on the size-distribution as well as the density of the nanowires. When the oxidation temperature was 700˚C, uniform size-distribution and high density of the nanowires was achieved. At lower and higher temperatures, the density of the nanowires was lower, and they displayed a broader size-distribution. It is suggested that the Cu2O nanowires were grown via a vapor-solid mechanism because no catalyst particles were observed at the tips of the nanowires.
        4,000원
        14.
        2014.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The effect of oxygen pressure on the synthesis of ZnO nanowires by means of melt-oxidation of an Al-Zn mixture was investigated. The samples were prepared in oxygen ambient for 1 h at 1,000˚C under oxygen pressure ranging from 0.5 to 100 Torr. ZnO nanowires were formed at oxygen pressures lower than 10 Torr. As the oxygen pressure increased from 0.5 to 10 Torr, the width of the nanowires increased, but their length decreased. The ZnO nanowires had a needle shape, which became gradually thinner toward the tip. X-ray diffraction patterns showed that the nanowires had a hexagonal wurtzite structure. However, ZnO nanowires were not observed when the oxygen pressure increased from 10 Torr to 100 Torr. In roomtemperature cathodeluminescence spectra of the ZnO nanowires, the intensity of ultra-violet emission at 380 nm increased with decreasing oxygen pressure, which indicated that the lower the oxygen pressure, the better the crystallinity of the ZnO nanowires.
        3,000원
        15.
        2012.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Single crystalline Cu nanowires with controlled diameters and aspect ratios have been synthesized using electrochemical deposition within confined nanochannels of a porous anodic aluminium oxide(AAO) template. The diameters of nano-sized cylindrical pores in AAO template were adjusted by controlling the anodization conditions. Cu nanowires with diameters of approximately 38, 99, 274 nm were synthesized by the electrodeposition using the AAO templates. The crystal structure, morphology and microstructure of the Cu nanowires were systematically investigated using XRD, FE-SEM, TEM and SAED. Investigation results revealed that the Cu nanowires had the controlled diameter, high aspect ratio and single crystalline nature.
        4,000원
        16.
        2012.08 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Two types of Pt nanoparticle electrocatalysts were composited on Pt nanowires by a combination of an electrospinning method and an impregnation method with NaBH4 as a reducing agent. The structural properties and electrocatalytic activities for methanol electro-oxidation in direct methanol fuel cells were investigated by means of scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and cyclic voltammetry. In particular, SEM, HRTEM, XRD, and XPS results indicate that the metallic Pt nanoparticles with polycrystalline property are uniformly decorated on the electro-spun Pt nanowires. In order to investigate the catalytic activity of the Pt nanoparticles decorated on the electro-spun Pt nanowires, two types of 20 wt% Pt nanoparticles and 40 wt% Pt nanoparticles decorated on the electro-spun Pt nanowires were fabricated. In addition, for comparison, single Pt nanowires were fabricated via an electrospinning method without an impregnation method. As a result, the cyclic voltammetry and chronoamperometry results demonstrate that the electrode containing 40 wt% Pt nanoparticles exhibits the best catalytic activity for methanol electro-oxidation and the highest electrochemical stability among the single Pt nanowires, the 20 wt% Pt nanoparticles decorated with Pt nanowires, and the 40 wt% Pt nanoparticles decorated with Pt nanowires studied for use in direct methanol fuel cells.
        4,000원
        17.
        2012.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 GaN 나노와이어의 인장, 압축, 하중 제거 전산모사를 분자동역학 방법을 통하여 수행하였고, 평형 분자 동역학 방법인 Green-Kubo 방법을 이용하여 각각의 변형된 구조의 나노와이어의 열전도율을 구하였다. 단면의 형상이 육 각형이고, 길이 방향이 [0001] 격자 방향으로 형성된 나노와이어에 인장 하중이 작용하게 되면 나노와이어의 원자 구조는 초기의 wurtzite 구조에서 정방정계 구조로 변형된다. 초기 상태에 압축 하중이 작용하는 경우에는 상변이 현상은 나타나 지 않는다. 압축에서 인장으로 변형률이 증가함에 따라 나노와이어의 열전도율은 감소하는 경향을 나타낸다. 이 같은 열전 도율의 변화는 변형률에 따른 포논의 감쇠시간 감소에 의한 것이다. 인장에 의해 변형된 정방정계 구조의 나노와이어에서 인장 하중을 제거하는 경우에는 초기의 wurtzite 구조로의 역상변이 현상이 나타나고, 이와 같은 역상변이 과정에 wurtzite 구조와 정방정계 구조가 동시에 나타나는 중간 단계가 존재한다. 중간 단계의 열전도율은 같은 변형률에서 wurtzite 구조 일 때보다 낮은 특성을 갖는다. 내부 원자 구조에 따른 열전도율의 차이는 구조적 변형에 의한 포논의 군속도 변화에 따른 것이다.
        4,000원
        18.
        2011.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        1-D ZnO nanowires have been attractive for their peculiar properties and easy growth at relatively low temperature. The length, diameter, and density of ZnO nanowires were determined by the several synthetic parameters, such as PEI concentration, growth time, temperature, and zinc salt concentration. The ZnO nanowires were grown on the<001> oriented seed layer using the hydrothermal process with zinc nitrate and HMTA (hexamethylenetetramine) and their structure and optical properties were characterized. The morphology, length and diameter of the nanowires were strongly affected by the relative and/or absolute concentration of Zn2+ and OH-1 and the hydrothermal temperature. When the concentrations of the zinc nitrate HMTA were the same as 0.015 M, the length and diameter of the nanowires were 1.97μm and 0.07μm, respectively, and the aspect ratio was 28.1 with the preferred orientation along the<001> direction. XRD and TEM results showed a high crystallinity of the ZnO nanowires. Optical measurement revealed that ZnO nanowires emitted intensive stimulated UV at 376 nm without showing visible emission related to oxygen defects.
        4,000원
        19.
        2011.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Ni nanowires were fabricated using anodic aluminum oxide (AAO) membrane as a template by electrochemical deposition. The nanowires were formed within the walls of AAO template with 200 nm in pore diameter. After researching proper voltage and temperature for electrochemical deposition, the length of Ni nanowires was controlled by deposition time and the supply of electrolyte. The morphology and microstructure of Ni nanowires were investigated by field emission scanning electron microscope (FE-SE), X-ray diffraction (XRD) and transmission electron microscope (TEM).
        4,000원
        20.
        2010.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        TiO2 nanowires were self-catalytically synthesized on bare Si(100) substrates using metallorganic chemical vapor deposition. The nanowire formation was critically affected by growth temperature. The TiO2 nanowires were grown at a high density on Si(100) at 510˚C, which is near the complete decomposition temperature (527˚C) of the Ti precursor (Ti(O-iPr)2(dpm)2). At 470˚C, only very thin (< 0.1μm) TiO2 film was formed because the Ti precursor was not completely decomposed. When growth temperature was increased to 550˚C and 670˚C, the nanowire formation was also significantly suppressed. A vaporsolid (V-S) growth mechanism excluding a liquid phase appeared to control the nanowire formation. The TiO2 nanowire growth seemed to be activated by carbon, which was supplied by decomposition of the Ti precursor. The TiO2 nanowire density was increased with increased growth pressure in the range of 1.2 to 10 torr. In addition, the nanowire formation was enhanced by using Au and Pt catalysts, which seem to act as catalysts for oxidation. The nanowires consisted of well-aligned ~20-30 nm size rutile and anatase nanocrystallines. This MOCVD synthesis technique is unique and efficient to self-catalytically grow TiO2 nanowires, which hold significant promise for various photocatalysis and solar cell applications.
        4,000원
        1 2