검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 12

        1.
        2016.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recently, the grain boundary diffusion process (GBDP), involving heavy rare-earth elements such as Dy and Tb, has been widely used to enhance the coercivity of Nd-Fe-B permanent magnets. For example, a Dy compound is coated onto the surface of Nd-Fe-B sintered magnets, and then the magnets are heat treated. Subsequently, Dy diffuses into the grain boundaries of Nd-Fe-B magnets, forming Dy-Fe-B or Nd-Dy-Fe-B. The dip-coating process is also used widely instead of the GBDP. However, it is quite hard to control the thickness uniformity using dip coating. In this study, first, a DyF3 paste is fabricated using DyF3 powder. Subsequently, the fabricated DyF3 paste is homogeneously coated onto the surface of a Nd-Fe-B sintered magnet. The magnet is then subjected to GBDP to enhance its coercivity. The weight ratio of binder and DyF3 powder is controlled, and we find that the coercivity enhances with decreasing binder content. In addition, the maximum coercivity is obtained with the paste containing 70 wt% of DyF3 powder.
        4,000원
        2.
        2016.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We investigate the microstructural and magnetic property changes of DyH2, Cu + DyH2, and Al + DyH2 diffusion-treated NdFeB sintered magnets with the post annealing (PA) temperature. The coercivity of all the diffusiontreated magnets increases with increasing heat treatment temperature except at 910oC, where it decreases slightly. Moreover, at 880oC, the coercivity increases by 3.8 kOe in Cu and 4.7 kOe in Al-mixed DyH2-coated magnets, whereas this increase is relatively low (3.0 kOe) in the magnet coated with only DyH2. Both Cu and Al have an almost similar effect on the coercivity improvement, particularly over the heat treatment temperature range of 790-880oC. The diffusivity and diffusion depth of Dy increases in those magnets that are treated with Cu or Al-mixed DyH2, mainly because of the comparatively easy diffusion path provided by Cu and Al owing to their solubility in the Nd-rich grain boundary phase. The formation of a highly anisotropic (Nd, Dy)2Fe14B phase layer, which acts as the shell in the core-shell-type structure so as to prevent the reverse domain movement, is the cause of enhanced coercivity of diffusion-treated Nd-Fe-B magnets.
        4,000원
        4.
        2013.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        High-coercive (Nd,Dy)-Fe-B magnets were fabricated via dysprosium coating on Nd-Fe-B powder. The sputtering coating process of Nd–Fe–B powder yielded samples with densities greater than 98%. (Nd,Dy)2Fe14B phases may have effectively penetrated into the boundaries between neighboring Nd2Fe14B grains during the sputtering coating process, thereby forming a (Nd,Dy)2Fe14B phase at the grain boundary. The maximum thickness of the Dy shell was approximately 70 nm. The maximum coercivity of the Dy sputter coated samples(sintered samples) increased from 1162.42 to 2020.70 kA/m. The microstructures of the (Nd,Dy)2Fe14B phases were effectively controlled, resulting in mproved magnetic properties. The increase in coercivity of the Nd-Fe-B sintered magnet is discussed from a micro- structural point of view.
        4,000원
        5.
        2012.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Effect of Cu and powder mixing with Cu-free (Nd, Dy)-Fe-B jet-milled powder on the magnetic properties of sintered magnets was investigated. The coercivity of a magnet prepared from the Cu-free (Nd, Dy)-Fe-B powder was about 10 kOe even though the alloy powder already contained some Dy (3.5 wt%). When small copper powder was blended, however, the coercivity of the magnet increased almost 100%, exhibiting about 20 kOe. On the contrary, the coercivity enhancement was moderate, about 4 kOe, when dysprosium content in the sintered magnet was simply increased to 4.9 wt% by the addition of small 3 powder.
        4,000원
        6.
        2011.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Sintered Nd-Fe-B magnets are widely used in many fields such as motors, generators, actuators, microwaves and so on due to their excellent magnetic properties. Many researchers have shown that the Nd-rich phase was essentially important for high magnet properties. In this study, we focused on controlling of the Nd-rich phase to enhance magnetic properties by the cyclic sintering process. Nd-Fe-B based sintered magnets were prepared by isothermal sintering and cyclic sintering processes. Magnetic properties and microstructure of the magnets were investigated. The coercivity was enhanced from 21.2 kOe to 23.27 kOe after 10 cycles of the sintering. The Nd-rich phase was effectively penetrated into the grain boundary between the grains by the cyclic sintering.
        4,000원
        8.
        2010.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In an attempt to optimize the magnetic properties of (Nd, Dy)-Fe-B sintered magnets, hydrogenation and post-sintering heat treatment processes were investigated at various hydrogenation temperatures and heat treatment temperatures. The coercivity of (Nd, Dy)-Fe-B sintered magnets hydrogenated at increased to about 1.2 kOe without any detrimental effect on the remanence. Moreover, the coercivity of the magnets was enhanced further by a consecutive and step heat treatment. These results eventually leaded to the reduction of the Dy content in a high coercive (> 30 kOe) (Nd, Dy)-Fe-B sintered magnets, as much as 10%.
        4,000원
        9.
        2010.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the sintering behavior of (Nd, Dy)-Fe-B powder which fabricated by strip-casting was investigated with various sintering temperatures and holding times. The relative density over 99% could be obtained by both sintering at for 1h and sintering at for 20h. The grain growth was observed in sintered specimen at compared to one at . The isothermal sintering process below led to suppress grain growth showing the improved magnetic properties. The phase transformation of Nd-rich was confirmed by X-ray diffraction pattern.
        4,000원
        10.
        2008.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Sintered Nd-Fe-B magnets have been widely used due to their excellent magnetic properties, especially for driving motors of hybrid and electric vehicles. The microstructure of Nd-Fe-B magnets strongly affects their magnetic properties, in particular the coercivity. Therefore, a post-sintering process like heat-treatment is required for improving the magnetic properties of Nd-Fe-B sintered magnets. In this study, cyclic heat treatment was performed at temperatures between and up to 16 cycles in order to control microstructures such as size and shape of the Nd-rich phase without grain growth of the phase. The 2 cycles specimen at this temperature range showed more homogeneous microstructure which leads to higher coercivity of 35 kOe than as-sintered one.
        4,000원
        12.
        1998.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        합금의 주조시 냉각속도가 Nd16Fe72V4B8 소결자석의 결정립 분포와 착자특성에 미치는 영향에 대하여 조사하였다. 냉각속도가 높은 Cu mold를 사용하여 제작한 시료는 좁은 결정립 분포와 착자특성의 향상을 보였다. B화합물을 생성하는 Cr, Mn, Nb 그리고 w과 같은 첨가원소가 Nd-Fe-B계 소결자석의 착자특성에 미치는 영향에 대해서도 조사하였다. Cr이나 W첨가는 보자력의 향상에 효과적이고 Nd16Fe72Cr4B9합금은 Nd16Fe72V4B8합금과 비슷한 착자특성을 보였다.
        4,000원