검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 188

        3.
        2024.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We study quasi-spherical, supersonic accretion flows around black holes using high-accuracy numerical simulations. We describe a code, the Lagrangian Total Variation Diminishing (TVD), and a remap routine to address a specific issue in the Advection Dominated Accretion Flow (ADAF) that is, appropriately handling the angular momentum even near the inner boundary. The Lagrangian TVD code is based on an explicit finite difference scheme on mass-volume grids to track fluid particles with time. The consequences are remapped on fixed grids using the explicit Eulerian finitedifference algorithm with a third-order accuracy. Test results show that one can successfully handle flows and resolve shocks within two to three computational cells. Especially, the calculation of a hydrodynamical accretion disk without viscosity around a black hole shows that one can conserve nearly 100% of specific a ngular momentum in one-and twodimensional cylindrical coordinates. Thus, we apply this code to obtain a numerically similar ADAF solution. We perform simulations, including viscosity terms in one-dimensional spherical geometry on the non-uniform grids, to obtain greater quantitative consequences and to save computational time. The error of specific angular momentum in Newtonian potential is less than 1% between r~10rs and r~10 4 rs, where rs is sink size. As Narayan et al. (1997) suggested, the ADAFs in pseudo-Newtonian potential become supersonic flows near the black hole, and the sonic point is rsonic~5.3rg for flow with α =0.3 and  =1 .5. Such simulations indicate that even the ADAF with  =5/3 is differentially rotating, as Ogilvie (1999) indicated. Hence, we conclude that the Lagrangian TVD and remap code treat the role of viscosity more precisely than the other scheme, even near the inner boundary in a rotating accretion flow around a nonrotating black hole.
        4,300원
        4.
        2024.07 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The Earth’s radiation belts, which extend from near the Earth to approximately geosynchronous orbit, contain highly energetic particles that actively interact with various plasma waves. This study reviews two numerical approaches to studying waveparticle interactions in the Earth’s radiation belts and discusses their respective advantages and limitations. The first approach involves diffusion simulations based on quasi-linear theory, which is well-suited for describing the collective dynamics of many particles from a statistical perspective. The second approach, test particle simulation, focuses on the detailed motion of individual particles, revealing nonlinear phenomena such as phase trapping and bunching. Both methods allow for the derivation of diffusion coefficients, which quantify the timescale of wave-particle interactions and help explain how particles either precipitate into the atmosphere or accelerate to higher energies in the Earth’s radiation belts. Additionally, these methodologies can be adapted to study the dynamics of planetary radiation belts, such as those around Jupiter and Saturn, by adjusting for the specific environmental parameters of each planet.
        4,600원
        5.
        2024.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Disposal cover as an engineered barrier of a near-surface disposal facility for low and very low-level radioactive waste is composed of a multi-layer to isolate radioactive waste from environmental influences for the long term. To acquire a realistic forecast for the post-closure period of the disposal facility, it is essential to carry out long-term experimental research in a similar condition to the actual disposal environment. Hence, a performance test facility of the disposal cover was constructed in Gyeongju low and intermediate level radioactive waste disposal center in 2022. The constructed performance test facility has differences from the material properties presented in the design. These differences are factors that affect the prevent rainfall infiltration, which is one of the important roles of the disposal cover. Therefore, in this study, a numerical simulation of rainfall infiltration into the performance test facility was performed for the designed case and the actual constructed case. To simulate the behavior of water infiltration, the FEFLOW software based on the finite element method is used. Through the analysis of numerical simulation results, it is confirmed that the hydraulic conductivity of the material constituting the multi-layer of the disposal cover greatly influences the amount of water infiltration.
        4,800원
        7.
        2023.12 구독 인증기관 무료, 개인회원 유료
        The rack cylinder is an important part of the pile leg structure of the jack up platform. Because of its complex structure, the flow field around the rack cylinder is different from that around the ordinary cylinder, which brings difficulties to the research of the rack cylinder. In this paper, using CFD(Computational Fluid Dynamics) solved the flow field of chords with different rack height and rack width under different KC and Re, the characteristics of the flow field around the cylinder with rack are obtained. The results show that Re, KC, rack height and rack width all have different effects on the flow field. When Re and KC are constant, Cd will increase with the increase of rack height ratio, the change of Cd and Cl is not significant, while the change of Cd and Cl varies with Re when the chord structure is fixed.
        4,000원
        8.
        2023.11 구독 인증기관·개인회원 무료
        The Barcelona Basic Model (BBM) is an elasto-plastic model used to describe the coupled thermo-hydro-mechanical behaviors of unsaturated soil. BBM is frequently adopted to model the unique swelling behavior of bentonite, which is generally considered as the buffer material between the host rock and the canister containing high-level radioactive waste in deep geological repositories, under the changing thermal, hydraulic, mechanical and chemical conditions during the lifetime of repository. Therefore, a variety of the continuum-based numerical methods tried to add the BBM for modelling the multi barrier systems of geological repository and succeeded to describe the elasto-plastic deformation of bentonite. However, to demonstrate the entire barrier systems the host rock should be modelled simultaneously with the buffer materials, and the continuum-based methods may be limited in their ability to reflect the fracture networks in the host rock which could be the major flow channels of groundwater. This research applies BBM in 3DEC, a three-dimensional block-based discrete element method, and validates the model by comparing the change of specific volume and mean effective stress during three numerical test cases. Discontinuum-based numerical methods with BBM can be extended to describe the coupled thermo-hydro-mechanical processes of multi-barrier systems in geological repositories, with a focus on the interaction between the host rock and bentonite.
        9.
        2023.05 구독 인증기관·개인회원 무료
        To conduct numerical simulation of a disposal repository of the spent nuclear fuel, it is necessary to numerically simulate the entire domain, which is composed on numerous finite elements, for at least several tens of thousands of years. This approach presents a significant computational challenge, as obtaining solutions through the numerical simulation for entire domain is not a straightforward task. To overcome this challenge, this study presents the process of producing the training data set required for developing the machine learning based hybrid solver. The hybrid solver is designed to correct results of the numerical simulation composed of coarse elements to the finer elements which derive more accurate and precise results. When the machine learning based hybrid solver is used, it is expected to have a computational efficiency more than 10 times higher than the numerical simulation composed of fine elements with similar accuracy. This study aims to investigate the usefulness of generating the training data set required for the development of the hybrid solver for disposal repository. The development of the hybrid solver will provide a more efficient and effective approach for analyzing disposal repository, which will be of great importance for ensuring the safe and effective disposal of the spent nuclear fuel.
        10.
        2023.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        수많은 함정용 채프들은 폭발에 의해 확산되어 채프운을 형성하며, 채프운은 허위 레이더 반사 단면적을 생성하여 적의 레이더를 기만한다. 본 논문에서는 전산유체역학-이산요소법 단방향 연동 기법을 기반으로 공기 중에 분포하는 함정용 채프운의 시공간 분포 를 해석하는 수치적 프레임워크를 구축하고 바람의 방향과 속도, 채프 카트리지의 초기 각도와 폭발 압력이 채프운 분포에 미치는 영 향을 분석하였다. 채프운의 확산은 폭발에 의한 방사형 확산, 난류와 충돌에 의한 전 방향 확산, 낙하 속도 차이에 의한 중력 방향 확산 과 같이 세 단계로 구분되는 것을 확인하였다. 바람은 채프운의 평균 위치를 이동시켰으며, 항력에 의한 확산 효과는 나타나지 않았다. 카트리지 초기 각도에 따라 폭발에 의한 방사형 확산 방향이 달라졌으며, 각도가 지면과 수직에 가까울수록 더 넓게 확산되었다. 폭발 압력이 증가할수록 채프운은 더 넓게 확산되었으나 중력 방향으로는 분포 차이가 작았다.
        4,200원
        11.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        과학과 기술의 발달로 복합재료, 합금, 고강도 탄소섬유, 고분자 재료 등 지능형 소재가 개발되고 있다. 다양한 엔지 니어링 분야에서 이러한 첨단 재료의 응용을 연구하기 위해 전 세계적으로 광범위한 연구가 진행되고 있다. 초탄성 형상기억합 금(SSMA)은 깃발 모양의 히스테리시스 거동을 가지며 추가적인 열처리 없이 응력 완화로 인한 잔류 변형이 거의 없는 신뢰성 이 높은 내진 재료이다. 그러나 공학 문제에서 SSMA 효율성을 연구하기 위한 수치 모델의 개발은 여전히 어려운 작업이다. 본 연구에서는 SSMA 인장시험의 실험결과를 통해 유한요소해석 프로그램인 Abaqus와 수치해석 프로그램인 OpenSEES를 이용하여 재료 모델을 구현한 후 해석결과의 거동 특성 및 에너지 소산을 분석하였다.
        4,000원
        12.
        2022.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        최근 국제해사기구의 해양환경오염규제가 강화되어 오고 있다. 선박의 에너지 효율지수는 선박의 설계관점에서 매우 중요 한 지표이다. 더욱이 새롭게 건조되는 선박은 물론 기존 운항 선박에도 에너지 효율지수를 만족하도록 강화하고 있다. 이에 따라 운항 되고 있는 기존선박의 에너지 효율지수를 높이기 위해 선수 벌브개조, 운항 중 트림 최적화, 에너지 절감장치등 다양한 방법이 적용되 고 있다. 본 연구에서는 전산 유체역학을 이용하여 다양한 선수/선미 트림조건에서 선박의 저항성능을 계산하고 분석하였다. 이를 바 탕으로 최적화 된 트림조건에서 선박의 저항성능을 더욱 개선하기 위해 선수 벌브의 형상을 재설계하였다. 그 결과 정수 중에서 개선 된 벌브 형상을 적용한 경우, 유효마력이 약 5% 향상되는 것을 확인하였으며, 향후 파도 중에서 재설계된 벌브형상이 저항성능에 미치 는 영향을 조사할 예정이다.
        4,000원
        13.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Equipment used for ships operating in the polar regions, such as icebreakers, should consider countermeasures against freezing. This study performed a structural design that prevents freezing and tolerates thermal stress and wind pressure of the air vent louver heating blades. As boundary conditions for performing the analysis, analysis was performed when the flow rates at the inlet end were 10m/s, 20m/s 30m/s, 40m/s, and 50m/s. As a result of the analysis, if the CNT heating element can maintain the heating performance of 200°C, the blade can maintain the room temperature state except for the end of about 40mm. There are pressure drop between the front and rear of the air vent louver. It can be seen that the allowable wind speed varies depending on the design criteria. As a results, it is required to select an optimal heating temperature to prevent condensation of a blade, optimize the generation of compressive stress by thermal expansion, and trade off the wind pressure and thermal stress according to wind speed.
        4,000원
        14.
        2022.05 구독 인증기관·개인회원 무료
        Gases such as hydrogen can generate from the disposal canister in high-level radioactive waste disposal systems owing to the corrosion of cooper container in anoxic conditions. The gas can be accumulated in the voids of bentonite buffer around the disposal canister if gas generation rates become larger than the gas diffusion rate of bentonite buffer with the low-permeability. Continuous gas accumulations result in the increase in gas pressure, causing sudden dilation flow of gases with the gas pressure exceeding the gas breakthrough pressure. Given that the gas dilation flow can cause radionuclide leakage out of the engineered barrier system, it is necessary to consider possible damages affected by the radionuclide leakage and to properly understand the complicated behaviors of gas flow in the bentonite buffer with low permeability. In this study, the coupled hydro-mechanical model combined with the damage model that considers two-phase fluid flow and changes in hydraulic properties affected by mechanical deformations is applied to numerical simulations of 1-D gas injection test on saturated bentonite samples (refer to DECOVALEX-2019 Task A Stage 1A). To simulate the mechanical behavior of microcracks which occur due to the dilation flow caused by increase in gas pressure, a concept of elastic damage constitutive law is considered in the coupled hydro-mechanical model. When the TOUGH-FLAC coupling-based model proposed in this study is applied, changes in hydraulic properties affected by mechanical deformations combined with the mechanical damage are appropriately considered, and changes in gas injection pressure, pore pressures at radial filters and outlet, and stress recorded during the gas injection test are accurately simulated.
        15.
        2022.05 구독 인증기관·개인회원 무료
        Discontinuum-based numerical methods can contain the multiple discontinuities in a model and reflect the thermal, hydraulic and mechanical characteristics of discontinuities. Therefore, discontinuum methods can be appropriate to simulate the model which require the detailed analysis of the coupled thermo-hydro-mechanical processes in fractured rock such as geothermal energy, CO2 geo-sequestration, and geological repository of the high-level radioactive waste. TOUGH-3DEC, the three-dimensional discontinuum simulators for the coupled thermo-hydro-mechanical analysis, was developed by linking the integral finite difference method TOUGH2 and the explicit distinct element method 3DEC to describe the coupled thermo-hydro-mechanical processes in both porous media and discontinuity. TOUGH2 handles thermo-hydraulic analysis by the internal simulation module, and 3DEC performs mechanical study based on the constitutive models of porous media and discontinuity with coupling the thermal and hydraulic response from TOUGH2. The thermal and hydraulic couplings are the key processes and should be carefully verified by sufficient cases, so this study performed the thermomechanical and hydro-mechanical simulations which are modelling the analytic solutions including the uniaxial consolidation, fracture static opening, and the heating of a hollow cylinder problems. Each thermo-mechanical and hydro-mechanical verification case is also validated by comparing with the results of the other continuum and discontinuum-based numerical methods. TOUGH-3DEC results follow the analytic solutions and show better accuracy than the continuum-based numerical methods in the static fracture opening problem. The developed TOUGH-3DEC simulator can be expanded to coupled thermo-hydro-mechanical-chemical analysis in fractured rock mass, and the simulator needs to be verified by more complicated coupled processes problems which require in the chemical coupling.
        16.
        2022.05 구독 인증기관·개인회원 무료
        Through constructing statistical fracture network model based on discrete element method, the evolution characteristics of the fracture aperture had been directly simulated and evaluated caused by redistributed stress after the borehole excavation. This study focuses on the size effect of the discrete element method for the analysis of the effective distance of fracture aperture change after the borehole excavation. A two-dimensional trace-type domain with a maximum size of 1.1 m2 was created using a discrete fracture network with stochastic information of KURT. A total of eight domains with different sizes were constructed from the largest domain area to the 0.4 m2 analysis area. The aperture change ratio which can be depending on the domain size was examined. The ratio was investigated by comparing the aperture size before and after the simulation of borehole excavation. In addition, the effective range of aperture changes was analyzed by comparing the re-distribution distance from the center of the borehole. Based on dimensional analysis, input variables (borehole radius, occurrence distance of aperture changes, domain size) were modeled using exponential distribution form. Through the analysis model, two dimensionless variables were derived to investigate the expected distance of the aperture changes and appropriate DFN domain size for simulating bole excavation. As an application example of the 3-inch borehole simulation, the analysis model predicted that the range of aperture changes could occur within a radius of about 0.98 m from the borehole center, and the suitable size of the model had been inferred as about 5 × 5 m for minimizing the domain size effect.
        17.
        2022.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        이 논문은 72m 초고강도 콘크리트 섬유보강 콘크리트 프리스트레스트 박스거더의 비선형 거동을 해석하는 3차원 해석방법을 제 시하였다. UHPC재료의 비선형 거동을 나타내기 위해 콘크리트 손상소성(CDP)모델을 채택하였다. 제시된 응력-변형률 관계 곡선에 근거한 수치해석 모델은 50m UHPC 프리스트레스트 박스 거더 휨실험결과로 검증하였다. 검증된 해석모델을 사용하여 72m UHPC 프리스트레스트 박스거더의 휨거동을 파악하는데 적용하였다. 각 하중단계에 따른 하중 변위관계, 응력상태 및 연결부분 상세를 해 석하였다. 하중-변위관계 곡선과 설계하중 및 극한하중 비교 결과는 UHPC 박스거더 휨거동을 해석하는 적절한 수단으로써 비선형 유한요소법의 적용성을 입증하고 있다.
        4,000원
        1 2 3 4 5