본 총설은 소수성 불소수지계 분리막의 표면 개질에 대한 개론으로 다양한 표면 개질 방법 및 그 연구 결과를 중 점적으로 서술하였다. PTFE로 대표되는 불소수지계 고분자 분리막은 막 증류, 유수 분리, 기체 분리를 포함한 다양한 막 분 리 공정에서 사용되어왔다. PTFE 막은 내화학성, 내열성, 높은 기계적 강도와 같은 뛰어난 물성에도 불구하고 소수성 표면 특성으로 인해 기술 적용의 확장에 제한적이다. 친수성 향상을 위해 습식 화학법, 친수성 고분자 코팅, 플라즈마 처리, 조사, 원자층 증착과 같은 다양한 PTFE 표면 개질 방법을 이용하며 이를 통해 불소수지계 분리막의 응용분야가 확장될 수 있다.
Sulfonated poly(arylene ether sulfone) (SPAES)random copolymers have been perceived as alternatives to perfluorinated sulfonic acid (PFSA) ionomers owing to their cheap production cost and low hydrogen permeability. In spite of their advantages, there are some issues to overcome such as membrane durability and relatively low proton conductivity in the low humidity range. An approach to solve these problems is to fill SPAES copolymers into porous support films (e.g., poly(tetra fluoro ethylene), PTFE). However, it is difficult to make defect-free pore-filling membranes. In this study, SPAES nanodispersion in a water-alcohol mixture is made under a modified supercritical condition and used to make highly proton conductive and chemical durable SPAES-PTFE pore-filling membranes.
Sulfonated poly(arylene ether sulfone) (SPAES) random copolymers have been perceived as membrane materials alternative to perfluorinated sulfonic acid (PFSA) ionomers, since they are cheap and chemically tunable when compared with PFSA. Moreover, their relatively low gas permeability, particularly to hydrogen, contributes to reduced thermal decomposition of membrane-electrode assemblies. In spite of their advantages, freestanding SPAES copolymers have critical issues associated with chemical/electrochemical durability as well as interfacial resistance with electrodes. In this study, SPAES-PTFE reinforced membranes are fabricated using consecutive membrane formation protocols, (e.g., SPAES nanodispersion in water-alcohol mixtures, spontaneous pore-filling, and solvent-assisted thermal treatment techniques) and systematically evaluated.
Perfluorinated sulfonic acid (PFSA) ionomers have been widely used as membranes in the fields of green power generation and electrolysis. In spite of their high ion-conducting properties, it is difficult to apply them in the freestanding membrane state to harsh operation conditions owing to their chemical and electrochemical degradation issues. A promising membrane concept to satisfy this purpose would be “pore-filling membrane” composed of PFSA ionomers and porous PTFE support films. In this study, the porous PTFE support film treated with a cheap hydrophilic polymer is used as a reinforced material. Interestingly, the resulting PFSA-PTFE pore-filling membranes exhibit an extremely high proton conductivity with a fairly reduced ionomer content, which may give a valuable information to design a desirable pore-filling membrane.
Polytetrafluoroethylene (PTFE) membrane has high resistance to chlorine, which is a great advantages in chemical cleaning to recover water flux during membrane processes in drinking water systems. A humic kaolin water with approximately 4 mg/L of DOC and 10 NTU of turbidity was prepared as a feed water. Coagulation pretreatment with or without settling was applied. The coagulation with settling showed the greatest water production. The reduced flux was effectively recovered by NaOCl cleaning, i.e., 21% recovery by 50 mg/L of NaOCl cleaning and 49% recovery by 500 mg/L NaOCl cleaning. The images of SEM and AFM analyses were corresponded to the water flux variation. However, when the floc was accumulated on the membrane surfaces, the efficiency of NaOCl cleaning was substantially limited. In addition, dynamic contact angle became greater after cleaning, which indicates changes in characteristics of fouling layer such as surface hydrophobicity. Proper cleaning technologies during enhanced backwash using NaOCl would expand application of PTFE membranes in drinking water systems.
과불소계 술폰화 이오노머(perfluorinated sulfonic acid ionomers; PFSAs)는 뛰어난 수소이온전도성과 높은 내화학성으로 인해 고분자 전해질 연료전지(polymer electrolyte fuel cells)용 고체전해질로 널리 사용되고 있다. 그러나 PFSA 전해질은 가습-건조조건에서 연료전지가 구동에 따라 반복적인 팽윤-수축으로 인해 전극층이 전해질로부터 탈리되어 전기화학적 수명특성이 감소되는 문제점을 가지고 있다. 본 연구에서는 다공성 PTFE support film의 기공특성에 대한 이해를 바탕으 로 기공구조 내 나피온 이오노머를 함침시키는 강화막을 제조하였고, 기본특성을 평가하였다. 제조된 강화막은 매우 높은 수 소이온전도도(~0.5 S cm-1@90°C in liquid water)를 나타내었다.
Polluting gases emitted from industrial sites take compound forms consisting of gaseous and particulate phases. Localization of PTFE membrane filters has thus been initiated to remove particulate materials and mercury, which is a heavy and hazardous metallic element. More specifically, a PTFE membrane filter was fabricated by thermal laminating technology to vary porosity on the filter surface for removal of particulate materials thereon. Optimized equi-biaxial stretching ratio control enables minimization of large-size pore formation with an average pore size of 0.58 μm and improved air permeability of 8.03 cm3/cm2/sec. Various adsorbents were tested for removal of mercury vapor by surface treatment of the PTFE membrane filter. The filter’s surface was further altered using functional amine group compounds: one composed of silane coupling agent (APTMS) was found suitable as a mercury adsorbent. When ACF with a large surface area was used as support material, mercury removal efficiency increased threefold to 0.162 mg/g-ACF. Furthermore, the developed PTFE membrane filter was tested in its capacity of differential pressure and filtering efficiency using a pilot scale particulate removal unit. Stable and consistent differential pressure was maintained during long-term operation and less frequent periods of filter shutdown due to pores filling with 99.96% of particulate removal efficiency, which was more than satisfactory filtration efficiency.