Background and Purpose: Antimicrobial photodynamic therapy using Methylene blue (MB-PDT) has been proposed as an adjunctive to scaling and root planing (SRP) to provide preferable results for the treatment of periodontitis. The multi-factor mechanism of aPDT action correlates with various influencing components such as the photosensitizer and the light delivery system. The paper aims to review the recorded parameters of MB-PDT from clinical trials of periodontitis which may serve to improve the treatment of periodontal diseases. Materials and Methods: PubMed search engine was used to identify human clinical trials of PDT in dentistry. After applying specific keywords, additional filters, exclusion criteria, the initial number of 17378 was reduced to 12. Results: More than half of the articles of SRP + MB-PDT presented better results [pocket depth (PD) reduction, clinical attachment level (CAL) gain, etc.] compared to SRP alone in the treatment of periodontitis. Conclusions: While more clinical evidence is needed, recent studies demonstrate that MB-PDT combined with SRP show a greater potential as a treatment of periodontal diseases in comparison to SRP alone.
Periodontitis, especially in its chronic form, is one of the leading causes of tooth loss, significantly affecting the quality of life in the modern era of aging society. Recent studies have revealed a potential correlation between periodontitis and various systemic diseases, including cardiovascular diseases and Alzheimer’s dementia (AD). With the body of epidemiologic evidence that links these separate disease entities, several lines of hypotheses have been postulated to provide mechanistic understandings that mostly comprises abnormal regulation of immunologic and inflammatory signaling. In this review, we revisit the experimental findings that describe virulence factors derived from Porphyromonas gingivalis, including gingipains and lipopolysaccharides, as well as their roles in the pathophysiology of AD. In addition, we address potential immunologic challenges imposed by this bacterial pathogen contributing to progression of AD.
Excessive intake of sodium caused by high salt diet promotes the expression of inflammatory cytokines and differentiation of helper T cells resulting in inflammatory responses. High-glucose diet also contributes to the pathogenesis of periodontitis by inducing changes in the oral microbiome and reducing salivation. However, the effect of a high-salt and glucose diet (HSGD) on the prognosis of periodontitis remains unclear. In this study, a rat model of experimental periodontitis was established by periodic insertion of absorbable sutures containing Porphyromonas gingivalis and Fusobacterium nucleatum strains into the right gingival sulcus to analyze the effect of HSGD on the incidence and progression of periodontitis. The alveolar bone heights (ABH) was measured with microcomputed tomography imaging of the HSGD- and general diet (GD)-treated groups. The right ABH was significantly decreased compared to the left in both groups at 4 weeks after induction of inflammation; however, no significant difference was noted between the groups. Notably, the ABH in the HSGD-treated group was significantly decreased at 8 weeks after induction of inflammation, whereas in the GD-treated group, an increase in the ABH was observed; a significant difference of the ABH was noted between the two groups (p < 0.05). At 12 weeks, recovery of the alveolar bone was observed in both groups, with no significant differences in ABH between the two groups. These findings indicate that the intake of excessive sodium attenuates the recovery rate of the alveolar bone even after the local infectant is removed. In addition, this study demonstrates the use of HSGD in establishing a new animal model of periodontitis.
Periodontitis is a bacteria-induced inflammatory disease associated with alveolar bone loss. Osteoclast is a macrophage-lineage cell that exhibits phagocytic activity; however, osteoclast phagocytic activity has not been demonstrated under pathological conditions. Diabetes is a pathological condition that exacerbates alveolar bone loss via periodontitis; therefore, we examined phagocytic osteoclasts in diabetic rats that had periodontitis. The rats were divided into the control (C), periodontitis (P), and diabetes with periodontitis (DP) groups. Diabetes and periodontitis were induced by streptozotocin injection and ligature of the mandibular first molars, respectively. On days 3 and 20 after the ligature, the rats were sacrificed, and osteoclasts containing inclusions were quantified by tartrate-resistant acid phosphatase staining. On day 3, there were more osteoclasts containing inclusions in the DP group than in the C group. Among inclusions, osteocyte-like cells and dense bodies were more frequently observed in the DP group than in the C group. Cytoplasm-like structures were elevated more in the DP group than in the C and P groups. However, no differences were observed on day 20. Interestingly, some osteoclasts were in contact with the osteocytes within the exposed lacunae and contained several inclusions within a large vacuole. Thus, the elevation of phagocytic osteoclasts in rats with diabetes and periodontitis provides insight into the role of osteoclast phagocytic activity under pathological conditions.
Porphyromonas gingivalis (Pg), Aggregatibacter actinomycetemcomitans (Aa), Tannerella forsythia (Tf), Prevotella intermedia (Pi), and Fusobacterium nucleatum (Fn) are major periodontal pathogens. Lipopolysaccharides (LPSs) from periodontal bacteria play an important role in periodontal pathogenesis by stimulating host cells to produce inflammatory cytokines. In this study, highly pure LPSs from the five major periodontopathogens were prepared, and their monocyte chemoattractant protein-1 (MCP-1) and tumor necrosis factor-α (TNF-α)-inducing activities were compared in human umbilical vein endothelial cells (HUVECs) and THP-1 macrophagic cells, respectively. In HUVECs, LPSs from Aa and Fn were potent stimulators for MCP-1 induction; however, LPSs from Pg, Pi, and Tf were much weaker MCP-1 inducers. In THP-1 cells, LPSs from Pg, Aa, and Fn were relatively strong inducers of TNF-α, whereas LPSs from Pi and Tf produced little activity. The Toll-like receptor (TLR)2/TLR4 dependency of various LPSs was also determined by measuring NF-κB reporter activity in TLR2- or TLR4-expressing 293 cells. LPSs from Aa, Fn, and Tf stimulated only TLR4; however, LPSs from Pg and Pi stimulated both TLR2 and TLR4. These results suggest that LPSs from major periodontal bacteria differ considerably in their cell-stimulating activity.
The purpose of this study was to evaluate the effect of mangosteen extract complex (MEC; Garcinia mangostana L. and propolis extracts) on the inhibition of inflammation and prevention of alveolar bone loss using a ligature-induced periodontitis model. Rat molars were ligatured with silk, and 1 μg/mL of lipopolysaccharide of Porphyromonas gingivalis was injected into the buccal and palatal gingivae of the teeth with or without treatment with the MEC. Changes in the expression levels of prostaglandin E2 (PGE2), interleukin-8 (IL-8), inducible nitric oxide synthase (iNOS), matrix metalloproteinase-8 (MMP-8), cyclooxygenase (COX)-1, and COX-2 in gingival tissues were evaluated using enzyme-linked immunosorbent assays. Alveolar bone loss around the ligated molars was examined using micro-computed tomography. The expression levels of PGE2, IL-8, iNOS, MMP-8, COX-1, and COX-2 in gingival tissues were significantly reduced in the group treated with a mixture of 16 μg of mangosteen extract powder and 544 μg of propolis extract powder (ligation [Lig] + lipopolysaccharide extracted from P. gingivalis KCOM 2804 [L] + MEC 1:34). Additionally, alveolar bone loss was significantly reduced in the Lig + L + MEC 1:34 group compared with that in other groups. These results indicate that the MEC could be useful in preventing and treating periodontitis.
The present study aimed at evaluating serum immunoglobulin G (IgG) avidity to Porphyromonas gingivalis in elderly patients with mild and severe chronic periodontitis. The avidity of antibodies against P. gingivalis present in the sera of 18 patients with mild chronic periodontitis and 18 patients with severe chronic periodontitis was evaluated using an ammonium thiocyanate-dissociated enzyme-linked immunosorbent assay (ELISA). The results showed that the mean absorbance value in serum IgG antibody titers was significantly higher in the severe chronic periodontitis group than in the mild chronic periodontitis group (198 ± 35 ELISA unit [EU] vs. 142 ± 32 EU, p < 0.01). However, there was no significant difference between the two groups in antibody avidity (65 ± 57 EU vs. 54 ± 27 EU). These findings suggest that humoral immune responses to P. gingivalis between mild and severe chronic periodontitis in elderly patients are characterized by the differences in the quantity rather than the quality of the antibodies.
Exosomes are Nano-sized lipid vesicles secreted from mammalian cells containing diverse cellular materials such as proteins, lipids, and nucleotides. Multiple lines of evidence indicate that in saliva, exosomes and their contents such as microRNAs (miRNAs) mediate numerous cellular responses upon delivery to recipient cells. The objective of this study was to characterize the different expression profile of exosomal miRNAs in saliva samples, periodically isolated from a single periodontitis patient. Unstimulated saliva was collected from a single patient over time periods for managing periodontitis. MicroRNAs extracted from each phase were investigated for the expression of exosomal miRNAs. Salivary exosomal miRNAs were analyzed using Affymetrix miRNA arrays and prediction of target genes and pathways for its different expression performed using DIANA-mirPath, a web-based, computational tool. Following the delivery of miRNA mimics (hsa-miR-4487, -4532, and -7108-5p) into human gingival fibroblasts, the expression of pro-inflammatory cytokines and activation of the MAPK pathway were evaluated through RT-PCR and western blotting. In each phase, 13 and 43 miRNAs were found to be differently expressed (|FC| ≥ 2). Among these, hsa-miR-4487 (|FC|=9.292005) and hasmiR- 4532 (|FC|=18.322697) were highly up-regulated in the clinically severe phase, whereas hsa-miR-7108-5p (|FC|= 12.20601) was strongly up-regulated in the clinically mild phase. In addition, the overexpression of miRNA mimics in human gingival fibroblasts resulted in a significant induction of IL-6 mRNA expression and p38 phosphorylation. The findings of this study established alterations in salivary exosomal miRNAs which are dependent on the severity of periodontitis and may act as potential candidates for the treatment of oral inflammatory diseases.
Porphyromonas gingivalis is among the major etiological pathogens of chronic periodontitis. The virulence mechanisms of P. gingivalis is yet to be identified as its activity is largely unknown in actual disease process. The purpose of this study is to identify antigens of P. gingivalis expressed only in patients with chronic periodontitis using a unique immunoscreening technique. Change Mediated Antigen Technology (CMAT), an antibody-based screening technique, was used to identify virulence-associated proteins of P. gingivalis that are expressed only during infection stage in patients having chronic periodontitis. Out of 13,000 recombinant clones screened, 22 tested positive for reproducible reactivity with rabbit hyperimmune anti-sera prepared against dental plaque samples acquired from periodontitis patients. The DNA sequences of these 18 genes were determined. CMAT-identified protein antigens of P. gingivalis included proteins involved in energy metabolism and biosynthesis, heme and iron binding, drug resistance, specific enzyme activities, and unknown functions. Further analysis of these genes could result in a novel insight into the virulence mechanisms of P. gingivalis.
Quorum sensing (QS) is a cell density-dependent communication mechanism between bacteria through small signaling molecules. When the number of QS signaling molecules reaches a threshold, they are transported back into the cells or recognized by membrane-bound receptors, triggering gene expression which affects various phenotypes including bioluminescence, virulence, adhesion, and biofilm formation. These phenotypes are beneficial for bacterial survival in harsh environments. This review summarizes the application of QS inhibitors for control of biofilm formation and virulence expression of periodontal pathogens.
To determine the effect of the tumor necrosis factor-α (TNF-α) in odontoclast formation, we administrated a TNF-α inhibitor in rats with diabetes rats with periodontitis. The rats included in the study were divided into three groups: control rats without diabetes or periodontitis (the C group), rats with periodontitis and diabetes (the PD group), and rats with periodontitis and diabetes treated by infliximab, the TNF inhibitor (the PD+infliximab group). The PD and PD+ infliximab groups received intravenous administrations of streptozotocin (STZ, 50 mg/kg) to induce diabetes. After 7 days of STZ injections, the mandibular first molars were ligatured to induce periodontitis. The PD+infliximab group was intrapenitoneally administrated by infliximab (5 mg/kg). On days 3 and 20 after the ligature administration, odontoclast formation along root surfaces was evaluated by tartrate resistant acid phosphatase (TRAP) staining and cathepsin K immunohistochemistry. On day 3, the number of TRAP- and cathepsin K-positive cells increased more so in the PD group than in the C group. The PD+infliximab group showed a lower number of positive cells than the PD group. There was no difference in all the groups on day 20. On day 3, the cathepsin-K positive multinucleated and mononucleated cells were higher in the PD group than in the C group. The number of cathepsin-K positive multinucleated cells was lower in the PD+infliximab group than in the PD group. The PD group showed more cathepsin K-positive cells in the furcation and distal surfaces than the c group. The Cathepsin K-positive cells of the PD+infliximab group were lower than that of the PD group in furcation. These results suggest that TNF-α stimulates odontoclast formation in diabetes with periodontitis.
Connective tissue growth factor (CTGF, CCN2) is one of the multi-functional secreted proteins which belong to CCN family of cysteine-rich growth factors. CTGF is known to have pivotal roles in embryonic endochondral ossification but its role in relevance to periodontitis is never been determined. To identify new molecular mediators associated with periodontitis-induced bone resorption, we have analyzed publicly available GEO database and found the markedly augmented CTGF mRNA expression in periodontitis gingival tissues. The existence of CTGF significantly enhanced mature osteoclasts survival which accompanied by reduction in TUNEL-positive nuclei and PARP cleavage. These results may provide another line of evidence the CTGF mediated prolonged osteoclast survival and subsequent increased bone resorption in the periodontitis patients.
Inflammation from chronic and acute infections of distal organs and tissues such as periodontitis is a risk factor for atherosclerotic vascular processes. Recently, a new model of atherosclerosis with vascular pathologies was developed in the Mongolian gerbil. In this study, we attempted to develop a model of ligature-induced periodontitis in gerbils and compared the characteristics of that periodontitis model with that in rats and mice. Each gerbil, rat, and mouse was randomly assigned to groups of control and periodontitis. A thread was placed around the cervix of the right and left first molars in the mandible with knots placed on the mesial side of each molar. At day 14 after the ligation, the animals were sacrificed and their mandibles were dissected. To measure alveolar bone loss along with inflammation, histopathological and micro-CT analyses were carried out. Gerbils showed tooth characteristics of deeper gingival crevice, longer cusp, longer root trunk and shorter root than those of rats and mice. The increased CEJ-ABC distance in distal and PDL area in furcation was also observed in ligated gerbils. An inflammatory response in the connective tissue under the junctional epithelium was also shown in all the animals. As a result, we confirmed the induction of periodontitis by ligature in the gerbils. We therefore consider the gerbil to be a useful model for investigating relationship between periodontitis and vascular disease in the same animal.
Periodontitis is an inflammatory disease, which destroys the connective tissue and the alveolar bone. Recently, it has been suggested that the effect of natural substances could be induced into an anti-inflammatory environment. However, the effect of Safflower seed extract (SAF-M) associated with periodontitis has not been investigated yet. Therefore, the purpose of this study was to assess the anti-inflammatory effects of SAF-M. Cytotoxicity was assessed through MTS analysis using hGF and hPDL cells. Periodontitis was induced by injecting LPS into gingival tissue on the maxillary molars of rats (45 μg LPS/one time, 3 times a week for 3 weeks). SAF-M was administered daily at 30 mg/kg and 100 mg/kg. Alveolar bone resorption was evaluated through the micro-CT. hGF and hPDL cells showed differential cytotoxicity in response to SAF-M at 5 mg/ml and 1 mg/ml concentrations. Micro-CT showed reduction of the alveolar bone resorption in the SAF-M treatment group. These results suggested that SAF-M is a potential therapeutic agent for periodontitis.
To determine the effect of diabetes on root resorption in periodontitis, we investigated odontoclast formation and root resorption in diabetic rats with periodontitis. Odontoclast formation was observed in three groups of F344 rats: Controls (C) were normal rats without diabetes or periodontitis; the periodontitis (P) group had mandibular first molars to be ligatured; the periodontitis with diabetes (PD) group was intravenously administered streptozotocin (50 mg/kg) to induce diabetes and had mandibular first molars to be ligatured. On days 3, 10, and 20 after ligature, tumor necrosis factor (TNF)-α and receptor activator of nuclear factor-κB ligand (RANKL) expression, odontoclast formation, and root resorption areas were evaluated by immunohistochemistry, tartrate-resistant acid phosphatase staining, and hematoxylin and eosin staining, respectively. The PD group showed frequent urination, weight loss, and hyperglycemia. Numbers of TNF-α- and RANKL-positive cells were higher in the P and PD groups than in the C group. It was more prevalent in PD group on day 3. Odontoclast formation was greater in the P and PD groups than in the C group on days 3 and 10, then decreased to same level as the C group by day 20. Root resorption in the PD and P groups showed increases on days 3 and 10, respectively, compared to the C group. These results suggest that diabetes may transiently increase root resorption on day 3 with high expression of TNF-α and RANKL after periodontitis induction. This study could aid the understanding of root resorption in diabetic patients with periodontitis.
S. aureus is reported as a major cause of nosocomial infections after dental care and involved in endocarditis, bacteremia, osteomyelitis, peritonitis, and soft tissues etc. It is very important to identify the distribution and the diversity of toxin gene associated with the S. aureus expression in dental care patients with periodontitis directly for an effective prevention and treatment of dental diseases. Fifty four strains of S. aureus were isolated from the saliva of 129 patients who were diagnosed with periodontitis at dental clinics and hospitals located in Seoul. The distribution of the virulence gene and the genetic diversity of the strains were studied using the polymerase chain reaction with isolated strains. The enterotoxin test showed Seb was the most frequent gene with 88.9%. The hemolysin gene of Hla, Hib and Hld were the most frequently gene with 98.1% (53 strains), leukocidins gene of lukM showed 90.7% (49 strains), and laminin binding protein gene of Eno showed 100% (54 strains), respectively. The diversity of the enterotoxin gen was held as Seb-Seg-Sei gene of 35.2% (19 strains), the diversity of hemolysin gene of Hla-Hlb-Hld gene was 98.1% (53 strains) and the diversity of leukocidins gene of LukD-LukM were 88.9% (48 strains), respectively. Patients with dental disease showed somehow high toxin gene expression so that S. aureus in dental care area is judged to show very highly pathogen with a high and infection rate. In the future, additional studies for these toxin genes seem to be required.
Chronic inflammation has long been considered as an important contributing factor to the development of malignant tumors in various tissues. In this study, we aimed to investigate a potential association between chronic periodontitis, a representative inflammatory disease in the oral cavity, and oral squamous cell carcinoma (OSCC), the most common form of malignant tumors in the oral cavity. A retrospective study was designed to include the cases and controls, each of which consisted of patients first diagnosed with OSCC and temporomandibular disorders, respectively. The existence or a history of periodontal disease was quantitatively estimated based upon the level of alveolar bone loss (ABL) from panoramic radiographs in these groups. Unlike other covariates, including LDH, WBC count and hemoglobin, the levels of ABL measured at three independent regions (second premolar and first/second molar) were significantly higher in the OSCC group, regardless of the patients’age in most cases. Our results thus support the hypothesis that chronic periodontitis, represented by significant ABL, is an important and clinically relevant factor potentially associated with the development of OSCC.
The presence of distinct bacterial species is found to be dependent on age, diet, and disease. We compared the detection rate of several oral bacterial strains in a cohort of 36 subjects including healthy volunteers, periodontal patients, and oral cancer patients. Gargling samples were obtained from these subjects from which DNA was then extracted. Specific primers for 29 bacterial species were used for PCR detection. In the oral cancer patients, Capnocytophaga ochracea, Gemella morbillorum, and Streptococcus salivarius were detected more frequently compared with the healthy volunteers and periodontitis patients. Fusobacterium nucleatum/ polymorphym and Prevotella nigrescens were significantly less prevalent in oral cancer patients than the other groups. In periodontitis patients, Porphyromonas gingivalis and Treponema denticola were more frequently found compared with the healthy volunteers. In the healthy volunteer group, Peptostreptococcus anaerobius was more frequently found than the other groups. The detection rate of several oral bacterial species was thus found to differ between healthy volunteers, periodontitis patients and oral cancer patients.
Saliva from the oral cavity was collected from 129 patients with periodontitis and 54 Staphylococcus aureus isolates were isolated from these samples. The S. aureus isolates were tested for their resistance patterns against 15 antibiotics using the disc diffusion method. The percentage of S. aureus isolates resistant to ampicillin was the highest (92.6%). In addition, the percentage of S. aureus isolates resistant to penicillin, oxacillin, cefotetan, cefepime and erythromycin was 90.7%, 11.1%, 11.1%, 9.3% and 5.6%, respectively. However, S. aureus isolates were susceptible to gentamycin, clindamycin, trimethoprim/sulfamethoxazole and vancomycin. 96.3% of S. aureus isolates were resistant to antibiotics. Among them, the percentage of two antibiotic-resistant S. aureus isolates was 74.1%, the percentage of one antibiotic-resistant S. aureus isolates was 5.6%, the percentage of three antibiotic-resistant S. aureus isolates was 3.7% and the percentage of S. aureus isolates resistant to more than 4 antibiotics was 13%. The most common multiple antimicrobial resistance pattern was AM-P. Furthermore, the percentage of methicillin-resistant S. aureus isolates was 11.1% and they were resistant to more than 3 antibiotics.
In the gingival tissues of patients with periodontitis, inflammatory responses are mediated by a wide variety of genes. In this study, we screened for differentially expressed genes (DEGs) in periodontitis compared with normal tissue using an annealing control primer (ACP) system. By ACP RT-PCR analysis, we obtained about 160 amplicons, 8 of which were found to be differentially expressed. DEGs in patients with periodontitis were thus successfully and reliably identified by the ACP-based RT PCR technique. The DEGs identified in the screen may also enhance our understanding of the pathogenesis of periodontitis.