본 연구는 선박 기관실 내에 설치된 증기 배관을 대상으로 누설 감지 및 상태 모니터링을 위한 방법론을 다루고 있다. 일반적 으로 기관실 내의 증기 배관은 보온재로 둘러싸여 있으므로, 증기가 누설되더라도 육안으로 식별하기 어려워 초기 대응을 지연시키는 상 황이 발생할 수 있다. 이에 본 논문은 RGB 카메라와 Thermal 카메라를 이용하여 상호보완적 정보 제공이 가능한 센서 시스템을 개발하기 위한 하드웨어 및 소프트웨어의 설계 방법을 제안한다. 보다 세부적으로 제안된 시스템은 카메라 서버 모듈, 카메라 보정 모듈, 영상 정합 모듈, 열-지도 학습 모듈, 추론 및 시각화 모듈로 구성된다. 특히 증기 배관의 누설이 이상 고온을 초래한다는 점을 고려하여, 본 논문은 열-지도의 개념을 정의하고 열-지도의 효과적인 학습, 열-지도에 기반한 이상 고온 감지, 감지된 이상 고온 영역의 시각화를 위한 알고리 즘을 제안한다. 제안된 방법은 선박 증기 배관 시스템을 모사한 실험 장치를 이용하여 다양한 실험을 통해 그 효용성을 입증한다.
The heat transfer characteristics of double-pipe spiral heat exchanger using aluminum oxide nano-fluid were investigated by three different sizes of curvature size, experimentally. Five concentration of nano-fluid as working fluid were made and tested to analyze the heat transfer characteristics. As results, the heat transfer performance was improved at 0.25% of nano-fluid due to high thermal conductivity, however, as the concentration of nanofluid increased (~2.0%), the heat transfer performance deteriorated due to the increase in thermal resistance caused by the sedimentation of particles in the flow path. In addition, the nano-fluid has a higher pressure drop than water due to its high density and viscosity. The optimal range for heat transfer enhancement of nano-fluid was found to be less than 4.0 LPM in flow rate and 0.25% of nano-fluid concentration in this study.
상수도 시스템에서의 사고 발생은 사용자들의 물 이용 불편으로 인해 막대한 사회경제적 피해를 초래할 수 있는 위협 요인이며, 따라서 수도사업자들은 수도정비기본계획 등을 통해 상수도 사고를 빠르게 복구하고, 피해 규모를 최소화하기 위한 다양한 노력을 기울이고 있다. 본 연구는 상수도 시스템에서 발생하는 관로사고 상황에 대하여 회복탄력성을 정량적으로 평가하고, 비상급수 방안을 포함한 사고 대응 전략의 효과를 분석하기 위한 평가 모형을 개발하였다. 개발 모형은 시스템의 회복탄력성에 기여하는 다양한 특성들을 반영할 수 있는 시간단위 공급 부족량과 충족률 지표를 통해 회복탄력성을 평가하며, 국내 지방상수도 시스템의 특정 구역을 대상으로 관로사고 시나리오를 모의하여 개발 모형의 적용 효과를 검증하였다. 결과적으로 개발 모형을 통해 비상연계관로, 배수지 충수, 병물 공급 등 비상대응 방안의 효과를 정량적으로 평가하였으며, 이를 통해 시스템의 회복탄력성 향상을 위한 설계 및 운영 전략 수립의 가능성을 확인하였다.
Today, as the social demand for tap water safety and the need for an ICT-based intelligent integrated control system increase, K-water (Korea Water Resources Corporation) is building and operating a ‘Water pipe monitoring CCTV system’ to quickly respond to crises in the event of a water leak. However, in the case of the existing system, when the CCTV rotates, the image information and the mapped water pipe image do net match, so the operator has the limitation that the water pipe image must be mapped anew every time. In this paper, in odert to solve the above problems, we propose an improved system that can extract feature points from CCTV images, detect changes in the coordinate values of the feature points, and automatically transform the location of the water pipe image by utilizing LoFTR (Detector-Free Local Feature Matching with Transformer), a type of deep learning image matching algorithm that is actively being studied in th field of the latest computer vision, and examine its effectiveness.
In this study, we developed a technology that can measure key evaluation items in the field for various rehabilitation methods and evaluated its performance. The results are as follows. First, when the spray-on lining adhesion strength is measured after drying at high temperature (60℃) for 4 hours and cooling for 2 hours, the results are equivalent to or higher than the adhesion strength measured at room temperature after 48 hours. Therefore, the time required for measuring the adhesion strength in the field can be shortened to 1/8, and it is expected to be helpful in evaluating the condition of the spray-on lining. Second, depending on close or adhesive to existing pipe of the liner of the close-fit lining or CIPP lining, and the grouting condition of the slip lining, the sound frequency generation pattern, the vibration magnitude, and duration using the impact echo showed different characteristics. Therefore, it is thought that it is possible to evaluate liner lifting or grouting failure through analysis of the acoustic frequency, vibration magnitude, and duration. Third, when water penetrates the back of the liner of the close-fit lining or CIPP lining, it was found that the water penetrated between the liner and the existing pipe acts as a couplant, and a signal is repeatedly generated in which ultrasonic energy is transmitted and reflected to the steel pipe after the liner. Therefore, it is judged that it is possible to check whether water has penetrated the back of the liner using ultrasonic waves. Fourth, the liner tensile strength of the close-fit, CIPP lining was compared with the tensile test and the instrumented indentation test, and it was found that the tensile strength was similar. So it was judged that it will be helpful in evaluating the mechanical strength change without the liner specimen in the future.
The design and implementation of acoustic metamaterials have garnered significant interest for their potential in noise and vibration reduction and control. However, the process of fabricating metamaterials is often perceived as challenging and confined to specialized fields. In this study, we aim to remove these barriers by demonstrating that it is possible to design and implement acoustic metamaterials using a simple array of commonly available PVC pipes. We designed and fabricated metamaterials using PVC pipe arrays and validated their performance through both numerical simulations and experimental testing. The experiments were conducted using standard audio equipment, and the results showed consistent trends with the numerical simulations. This research demonstrates that acoustic metamaterials can be effectively realized using accessible materials like PVC pipes, providing a practical approach to noise reduction and control.
본 연구에서는 센싱 기반 모니터링 스마트 파이프 개발 연구의 일환으로 화학적 전처리된 코팅 강관에 대한 유한요소해석을 실시 하였다. 개발된 코팅 강관은 내・외면 개질 폴리에틸렌으로 화학적 코팅 전처리 과정을 수행하였으며, 확관 시 표면 코팅 손상을 최소 화하기 위한 연결 부속을 사용한 코팅 강관의 해석을 수행하였다. 다양한 하중에 대한 구조성능 평가를 위해 토압 하중에 의한 정적 구 조해석, 차량 하중에 의한 피로수명 평가, 인장 및 압축 하중에 의한 누수 저항성의 4가지 하중 조건을 설정 및 조사하였다. 해석 결과, 기존 에폭시 코팅 및 조인트 사용 강관 대비 개발 강관에서 개선된 피로 수명이 산출되었으며, 동일 직경의 조건에서 평균 56.1%의 최 대 변위 감소와 61.2% 최대 응력이 감소함을 통해 개발 코팅 강관과 연결 부속의 안전성을 검증하였다. 이에 더하여 응력 분포 분석을 통해 체결부의 누수 저항성 역시 강관 중앙면 대비 우수함을 확인하였다.
배관 세정 공정은 조선소 선박 건조과정에서 배관 설치 후 장비를 시운전하는 단계로 넘어가기 전에 최종적으로 배관 내부의 이물질을 제거하는 매우 중요한 공정이다. 만약에 배관 내에 이물질이 있는 상태에서 장비를 시운전하는 단계로 넘어갈 경우 이물질이 고가의 장비에 유입되어 펌프 및 기어, 베어링 등이 파손되는 요인이 된다. 특히 펌프나 유압 밸브 같은 경우는 아주 작은 이물질이라도 장비 속으로 유입이 되면 대형 사고로 이어지며, 이런 장비 사고는 주변에 장비 운전을 하는 작업자의 인명사고까지 연계되어 중대 재해 의 잠재 원인이 되므로 조선소 고객인 선주들도 매우 집중적으로 확인하고 관리하는 공정이다. 이러한 문제점을 해결하기 위해 본 연구 에서 기존의 배관 세정 공법에서 유세정 효과를 증가시킬 수 있도록 배관 내 세정 유체의 흐름을 증가할 수 있는 시스템을 제안한다.
This study improved the work efficiency by supplementing the shortcomings of the manual process by developing a double tube feeding device, and the following results were obtained by conducting the production capacity, production length, and defect rate tests. Developed a double tube production system to enable the simultaneous production of two tubes, increasing the production volume by about 1.5 times. The product length has been improved from semi-automatic to automated, and the production capacity has been improved from 16 to 25 pieces per hour (based on 15m). Developed a double-tube input straight line automatic adjustment feeder, which resulted in reducing the defect rate to less than 1%.
This study investigates the enhancement of surface precision and dimensional accuracy in STS 316L oval pipes through the application of magnetic abrasive finishing. The experiment involves the modification magnetic pole shapes(A, B, C, D) and a comprehensive analysis of their impact on surface quality. Key parameters include magnetic abrasive KX#320, iron powder, aluminum oxide, light oil, a test specimen rotating at 600rpm, and periodic injection of polishing liquid, a permanent magnet Nd-Fe-B, and magnetic pole steel 1018, reciprocating distance 20mm, and a feed rate 1mm/sec over a 32minutes duration with measurements every 4minutes. The results demonstrate significant variations in surface quality based on magnetic pole shape, with specific configurations demonstrating superior precision and smoothness from the initial surface 0.32μm to 0.06μm.
The heat transfer characteristics of double-pipe spiral heat exchanger were investigated by various curvature sizes, experimentally. The three different sizes of heat exchanger were made and tested with water as a working fluid to analyze the heat transfer characteristics. The heat transfer rates, overall heat transfer coefficient and pressure drop were analyzed with various heat exchanger sizes (i.e., curvature ratios). As result, the heat transfer rate increased with increasing the size of the heat exchanger as the flow rate increased due to increasing the area size of heat transfer. However, the overall heat transfer coefficient and pressure drop increased with decreasing the heat exchanger size (i.e., increased curvature ratio) due to the enhanced centrifugal force and inertia.
Water utilities are making various efforts to reduce water losses from water networks, and an essential part of them is to recognize the moment when a pipe burst occurs during operation quickly. Several physics-based methods and data-driven analysis are applied using real-time flow and pressure data measured through a SCADA system or smart meters, and methodologies based on machining learning are currently widely studied. Water utilities should apply various approaches together to increase pipe burst detection. The most intuitive and explainable water balance method and its procedure were presented in this study, and the applicability and detection performance were evaluated by applying this approach to water supply pipelines. Based on these results, water utilities can establish a mass balance-based pipe burst detection system, give a guideline for installing new flow meters, and set the detection parameters with expected performance. The performance of the water balance analysis method is affected by the water network operation conditions, the characteristics of the installed flow meter, and event data, so there is a limit to the general use of the results in all sites. Therefore, water utilities should accumulate experience by applying the water balance method in more fields.
Kori Unit 1, pressurized water reactor, is the Korea’s first commercial nuclear power plant. It successfully generated electricity for a period of 30 years, commencing from April 19, 1978. Following its approval for continued operation in 2008, Kori Unit 1 continued to operate for an additional 9 years, resulting in a total operational period of 39 years. On June 18, 2017, Kori Unit 1 was permanently shut down. Since then, Korea is actively preparing for the decommissioning of nuclear power plant. During the decommissioning of a nuclear power plant, the heavy components such as reactor, steam generator, pressurizer, reactor coolant pump located in the containment building should be taken out of the containment building. To take out heavy components from the containment building, pipes connected to heavy component should be cut. There are numerous pipes connected to the heavy component, each with varying dimensions and material. Each pipe has a different level of contamination depending on its use. In this study, optimal cutting method of pipe connected to steam generator, one of the heavy components of nuclear power plant, is proposed during the decommissioning of Kori unit 1. In case of pipe connected to Kori unit 1 steam generator, material is stainless steel or carbon steel. These pipes have varying inner diameter, ranging from 0.6 cm to 74 cm, and thickness ranging from 0.15 cm to 7.1 cm. These pipes are classified as low and intermediate level waste (LILW) or very low level waste (VLLW). Because characteristics of pipes are different, each pipe optimal cutting methods are proposed differently considering material, dimension, contamination level, cutting cost, cutting time, and the management of secondary waste. As a result, the cutting method for pipe of reactor coolant system is selected to orbital cutting. The cutting method of main steam pipe and main feedwater pipe is selected to oxygen cutting. In case of other small pipes, cutting method is selected to circular saw.
Unlike other facilities, maintaining processes is essential in industrial facilities. Pipe racks, which support pipes of various diameters, are important structures used in industrial facilities. Since the transport process of pipes directly affects the operation of industrial facilities, a fragility curve should be derived based on considering not only the pipe racks' structural safety but also the pipes' transport process. There are several studies where the fragility curves have been determined based on the structural behavior of pipe racks. However, few studies consider the damage criteria of pipes to ensure the transportation process, such as local buckling and tensile failure with surface defects. In this study, an analysis model of a typical straight pipe rack used in domestic industrial facilities is constructed, and incremental dynamic analysis using nonlinear response history analysis is performed to estimate the parameters of the fragility curve by the maximum likelihood estimation. In addition, the pipe rack's structural behavior and the pipe's damage criteria are considered the limit state for the fragility curve. The limit states considered in this paper to evaluate fragility curves are more reasonable to ensure the transportation process of the pipe systems.
The importance of Structural Health Monitoring (SHM) in the industry is increasing due to various loads, such as earthquakes and wind, having a significant impact on the performance of structures and equipment. Estimating responses is crucial for the effective health management of these assets. However, using numerous sensors in facilities and equipment for response estimation causes economic challenges. Additionally, it could require a response from locations where sensors cannot be attached. Digital twin technology has garnered significant attention in the industry to address these challenges. This paper constructs a digital twin system utilizing the Long Short-Term Memory (LSTM) model to estimate responses in a pipe system under simultaneous seismic load and arbitrary loads. The performance of the data-driven digital twin system was verified through a comparative analysis of experimental data, demonstrating that the constructed digital twin system successfully estimated the responses.
This study investigated how to repair high-pressure pipes by applying the expansion method instead of the welding method used to repair pipes in the steel, petrochemical, and shipbuilding industries that use high-pressure pipes, and developed a pipe-specific expansion device and auxiliary equipment to use the expansion pipe. We developed an expansion device with a range of 65A to 125A, evaluated the characteristics of the equipment, and manufactured high-pressure pipes made with this device, and obtained the following conclusions. The pressure resistance performance test of the non-welded expansion device was carried out at 32A to 125A, and the pipe pressure resistance test showed good results, and the durability test confirmed the durability of 0.0061 to 0.0063mm. The vibration test of the developed expansion device was measured at 0.3~0.5mm/s, and the noise measurement result was 65.1~65.5 at 32A, 65.2~65.5 at 65A, and 65.4~66.6dB at 125A.
In light of recent social concerns related to issues such as water supply pipe deterioration leading to problems like leaks and degraded water quality, the significance of maintenance efforts to enhance water source quality and ensure a stable water supply has grown substantially. In this study, scan statistic was applied to analyze water quality complaints and water leakage accidents from 2015 to 2021 to present a reasonable method to identify areas requiring improvement in water management. SaTScan, a spatio-temporal statistical analysis program, and ArcGIS were used for spatial information analysis, and clusters with high relative risk (RR) were determined using the maximum log-likelihood ratio, relative risk, and Monte Carlo hypothesis test for I city, the target area. Specifically, in the case of water quality complaints, the analysis results were compared by distinguishing cases occurring before and after the onset of "red water." The period between 2015 and 2019 revealed that preceding the occurrence of red water, the leak cluster at location L2 posed a significantly higher risk (RR: 2.45) than other regions. As for water quality complaints, cluster C2 exhibited a notably elevated RR (RR: 2.21) and appeared concentrated in areas D and S, respectively. On the other hand, post-red water incidents of water quality complaints were predominantly concentrated in area S. The analysis found that the locations of complaint clusters were similar to those of red water incidents. Of these, cluster C7 exhibited a substantial RR of 4.58, signifying more than a twofold increase compared to pre-incident levels. A kernel density map analysis was performed using GIS to identify priority areas for waterworks management based on the central location of clusters and complaint cluster RR data.