검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 135

        1.
        2024.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Coal tar pitch is a raw material that can be made from various carbon materials such as activated carbon, carbon fiber, and artificial graphite through heat treatment. In particular, it is an important raw material used as a binder and impregnated pitch when manufacturing carbon composite materials. In order to improve the physical properties of such a carbon composite material, the content of β-resin is an important factor. Although β-resin plays the role of a binder, it also corresponds to fixed carbon, so it can determine the physical properties after carbonization. In this study, we compared the physical properties of coal tar pitch various temperature ramping rate, and found through Py-GC/MS analysis that intermediate materials were generated by heteroatoms such as oxygen and nitrogen. MALDI-TOF/MS analysis revealed that these intermediate materials overlapped with the molecular weight region of β-resin. Therefore, the content of β-resin is in the following order: 430–5 (12.8 wt%), 430–10 (10.2 wt%), and 430–2 (6.3 wt%), and when 430–5 is used as a binder, the highest density appeared at 1.75 g/cm3. However, such intermediate materials undergo thermal decomposition even at temperatures above 900 °C. As a result, after carbonization, 430–5 had a density of 1.60 g/cm3, which was similar or lower than that of 430–2 (1.72 → 1.63 g/ cm3) and 430–10 (1.73 → 1.61 g/cm3). From these results, it is expected that if the heteroatom content is distributed in an appropriate amount and the heating rate is well controlled, it will be possible to maintain a high density even after carbonization while ensuring a high beta-resin content.
        4,000원
        2.
        2024.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Noise is defined as ‘unwanted sound’ or ‘undesired sound’. Recently, the aviation industry has been rapidly developing through convergence with cutting-edge technologies such as UAM. Accordingly, it is expected that new aviation industry models will continue to be created in Korea. In addition, it is expected that aircraft noise will be raised as a new social problem. The characteristic of aircraft noise is that it has a wide transmission range. Therefore, the area affected by aircraft noise is extensive, and the damage area varies depending on the flight path and flight environment. Additionally, it tends to occur continuously in certain areas. This study is an extension of the previous studies 􋺷Study on noise measurement and analysis of C172 aircraft at Muan Airport􋺸 and 􋺷Study on noise measurement and analysis of SR20􋺸, and investigated the noise characteristics of various piston engine trainer aircraft operated in Korea. We want to measure and analyze noise.
        4,000원
        3.
        2024.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study involved the heterogenization of a binder pitch (BP) using a small amount of nanocarbon to improve physical properties of the resulting graphite electrode (GE). Heterogenization was carried out by adding 0.5–2.0 wt.% platelet carbon nanofiber (PCNF) or carbon black (CB) to a commercial BP. To evaluate the physical properties of the BPs, we designed a new model graphite electrode (MGE) using needle coke as a filler. The heterogenized binder pitch (HBP) with PCNF or CB clearly increased the coking value by 5–13 wt.% compared to that of the as-received BP. Especially, the model graphite electrodes prepared with HBPs containing 1.0 wt.% PCNF or CB showed significantly improved physical properties compared to the control MGE from the as-received BP. Although the model graphite electrodes prepared with HBPs showed similar properties, they had smaller pore sizes than the control. This indicates that heterogenization of the BP can effectively decrease the pore size in the MGE matrix. Correlating the average pore sizes with the physical properties of the model graphite electrodes showed that, for the same porosity, matrices formed by the HBP with a smaller average pore size can effectively improve the apparent density, tensile strength, and oxidation resistance of the model graphite electrodes.
        4,500원
        4.
        2024.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The study investigated a method of synthesizing a pitch suitable for making activated carbon using fluid catalytic crackingdecant oil (FCC-DO), a high-purity carbon precursor from oil refining. We kept the reaction time and catalyst amount constant while varying the temperature to investigate its impact on pitch synthesis and the resulting physical and activation properties. Previous research established that materials added during pitch synthesis can affect the properties of both the pitch and resulting activated carbon. This study examined the addition of polyethylene terephthalate (PET) to FCC-DO-based pitch. The results indicated significant changes in properties with PET addition and temperature variation that ensured stable activated carbon quality. At temperatures of 390 °C or higher, the specific surface area of the activated carbon stabilized between 2680 and 2740 m2/ g. Waste PET, a recyclable plastic, was chosen due to its compatibility and thermodynamic suitability for pitch synthesis. Importantly, adding PET didn't generate additional waste or degrade the physical properties of the activated carbon.
        4,000원
        5.
        2024.07 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In the present study, a coal-based pitch containing 12.1% quinoline insoluble (QI) underwent isothermal heat treatment, and changes in the mesophase microstructure were analyzed for the heat treatment duration. The nuclei creation and growth rate of mesophase were affected by the distribution of QI particles in the pitch. The growth process could be explained in four regions through the mesophase area fraction. During the carbonization of carbon blocks, mesophase formation was induced in the binder phase. The physical properties of carbon blocks were measured as a function of residence time. As residence time increased, bulk density decreased and porosity increased, but electrical conductivity increased. It was determined that forming a mesophase in the binder phase during carbonization reduced the size of large pores in carbon block and improved the connectivity between particles, thereby increasing electrical conductivity. These results are expected to show greater improvement in electrical properties after graphitization.
        4,300원
        6.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Industrial activities that utilize nuclear technology can cause radioactive contamination in the ecosystems. In particular, cesium (Cs) has problems, such as neurological diseases, when it is exposed and accumulated in the bodies of animals, plants, and humans for a long time. Therefore, the development of simple and economical adsorbents for Cs removal is required. In this study, the surface of petroleum residue pitch was modified using NaClO and it was used to remove Cs from an aqueous solution. Batch experiments and characterization of the modified adsorbent were performed to determine the adsorption mechanism between the adsorbent and Cs. From these results, chemical and monolayer adsorption were found to occur at the carboxyl groups on the adsorbent surface, along with a cation exchange reaction occurred due to the sodium ions on the surface. Through this modification process, the total acidity, including phenolic, lactonic and carboxylic functional groups, was improved to 1.563 mmol/g and the maximum adsorption capacity of Cs for the modified adsorbent was 65.8 mg/g.
        4,200원
        7.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In the past, aviation technology developed from wood to alloys to composite materials. Propellers have also evolved from wood to composite materials for modern small aircraft. In this context, research is needed on a three-blade composite propeller based on the Rotax 912 engine, which is widely used in Korea. In this study, the goal is to select the optimal propeller pitch angle by investigating noise changes according to changes in blade angle and engine 4000RPM of three types of three-blade propellers different from each propeller manufacturer. By comparing the noise of the three types of propellers most commonly used in Korea and suggesting the minimum noise blade angle for each propeller, we aim to help aircraft operators select propellers and resolve noise complaints around airfields.
        4,000원
        8.
        2024.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the aromatic carbon content of epoxy resin (EP) increased via carbon tar pitch (CTP) modification, and the CTP occurred self-polymerization reaction. The carboxyl and hydroxyl groups of CTP and the hydroxyl and carboxyl groups of EP occurred chemical cross-linking reaction. CTP and graphitization treatment promoted EP CF carbon crystal growth. The graphitization degree of pure EP CF and 40 wt% CTP modified EP CF are 8.42% and 44.21%, respectively. With the increase CTP content, the cell size, ligament junction and density of graphitization modified EP CF gradually increased, while the number of pores and cells gradually decreased. The cell size, ligament junction size and density of 40 wt% CTP modified graphitization EP CF increased to 1200 μm, 280 μm and 0.5033 g/cm3, respectively. EP CF exhibits entangling carbon ribbon and isotropic amorphous carbon. The 40 wt% CTP modified EP CF is composed of evenly distributed amorphous resin carbon and graphite domain CTP carbon. The graphitization modified EP CF improved electrical conductivity, and the electrical conductivity of 40 wt% CTP modified EP CF is 126.6 S/m. The compressive strength can be decided by EP carbon strength and its char yield, and graphitization 40 wt% CTP modified EP CF reached 4.9 MPa. This study provides some basis for preparation and application of CTP modified EP CF.
        4,000원
        9.
        2024.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The lithium-ion battery has been utilized in various fields including energy storage system, portable electronic devices and electric vehicles due to their high energy and power densities, low self-discharge, and long cycle-life performances. However, despite of various research on electrode materials, there is a lack of research on developing of binder to replace conventional polymer-based binding materials. In this work, petroleum pitch (MP-50)/polymer (polyurethane, PU) composite binder for lithium-ion battery has fabricated not only to use as a binding material, but also to re-place conventional polymer-based binder. The MP-50/PU composite binder has also prepared to various ratios between petroleum pitch and polymer to optimize the physical and electro-chemical performance of the lithium-ion battery based on the MP-50/PU composite binder. The physical and electrochemical performances of the MP-50/PU composite binder-based lithium-ion battery were evaluated using a universal testing machine (UTM), charge/discharge test. As a result, lithium-ion battery based on the MP-50/PU composite (5:5, mass ratio) binder showed optimized performances with 1.53 gf mm− 1 of adhesion strength, 341 mAh g− 1 of specific discharge capacity and 99.5% of ICE value.
        4,000원
        10.
        2024.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study aimed to identify and analyze the effects of both isothermal heat treatment temperature and residence time on the formation of mesophase in coal tar pitch, especially with respect to its microstructural and crystalline evolution. The formation and growth of mesophase resulted in a decrease in d002 and an increase in Lc, and the degree of such variation was larger when the isothermal heat treatment temperature was higher. In isothermally heat-treated pitch, two distinct domains were observed: less developed crystalline carbon (LDCC) and more developed crystalline carbon (MDCC). When pitch was isothermally heat-treated at 375 °C for 20 h, d002 was 4.015 Å in the LDCC and 3.515 Å in the MDCC. Higher isothermal heat-treatment temperatures accelerated the formation, growth, and coalescence of mesophase. Indeed, in the pitch specimen isothermally heat-treated at 425 °C for 20 h, d002 was 3.809 Å in the LDCC and 3.471 Å in the MDCC. The evolution of mesophase was characterized by pronounced inflection points in d002 curves. It was found that the emergence of these inflection points coincided with pronounced changes in the microstructure of mesophase. This finding confirmed the relationship between inflection points in d002 and the microstructure of mesophase.
        4,200원
        11.
        2024.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, Pitch-derived activated carbon (PAC) pellets were by steam activation for automotive carbon canisters. The crystal structure of PAC was analyzed using X-ray diffraction. The textural properties of PAC were studied by Brunauer– Emmett–Teller (BET), Horvath-Kawazoe (HK), and Non-Localized Density Functional Theory (NLDFT) equations with N2/ 77 K isotherm adsorption/ desorption curves. The butane adsorption capacity of the PAC pellets was analyzed according to the ASTM D5228 standard. With increasing steam activation time, the specific surface area and total pore volume of the PAC increased 650–1950 m2/ g and 0.27–1.02 cm3/ g, respectively. The mesopore ratio of PAC increased with increasing activation time and was observed up to 28.4% at 190 min. The butane adsorption capacity of the PAC increased and was observed to range from 10.86 to 51.55%. A close relationship between butane adsorption capacity and pore size (1.47–2.39 nm) was found. Finally, the butane activity of PAC was found to be 51.55% for the steam activated at 950 ℃ for 190 min; this butane activity is 24% better than that of the coconut-derived activated carbon (41.43%) with a similar specific surface area, indicating that pitch is a suitable material for the activated carbon of automotive carbon canisters.
        4,200원
        12.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The lithium ion battery has applied to various fields of energy storage systems such as electric vehicle and potable electronic devices in terms of high energy density and long-life cycle. Despite of various research on the electrode and electrolyte materials, there is a lack of research for investigating of the binding materials to replace polymer based binder. In this study, we have investigated petroleum pitch/polymer composite with various ratios between petroleum pitch and polymer in order to optimize the electrochemical and physical performance of the lithium-ion battery based on petroleum pitch/polymer composite binder. The electrochemical and physical performances of the petroleum pitch/polymer composite binder based lithium-ion battery were evaluated by using a charge/discharge test, cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and universal testing machine (UTM). As a result, the petroleum pitch(MP-50)/polymer(PVDF) composite (5:5 wt % ratio) binder based lithium-ion battery showed 1.29 gf mm-1 of adhesion strength with 144 mAh g-1 of specific dis-charge capacity and 93.1 % of initial coulombic efficiency(ICE) value.
        4,000원
        13.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This paper proposes the optimal molecular weight for a petroleum-based binder pitch to enhance the density and strength of the prepared graphite block. The effect of the molecular weight on the binder properties, which was quantified using solvent fractionation, was considered based on the evaluation of the coking and viscosity characteristics. The affinity of the pitch to coke influenced the carbonization yield of the block, and the proportion of closed pores was reduced via the use of a highaffinity binder pitch. In addition, the viscosity was found to influence the uniformity of the coke and pitch dispersions, and numerous open pores were formed in the graphite block under high-viscosity conditions. In terms of the molecular weight, a reduction in the content of the insoluble 1-methyl-2-pyrrolidone (NMP) fraction, which was the heaviest fraction present in the pitch, was found to reduce the affinity of the binder to coke while increasing its viscosity. Therefore, the density and strength of the prepared graphite block were reduced upon increasing the insoluble NMP content of the binder pitch. Consequently, it was necessary to control the content of this fraction within < 13.81 wt% to obtain high-density and high-strength graphite blocks.
        4,000원
        14.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The spherical mesophases are the main precursors for the high tap density of carbonaceous anode batteries. However, it is challenging to control mesophase size without coalescence and no deformation since it quickly coalesces into a regular large sphere. Here, we propose a feasible extraction method to refine the spherical size of mesophase using benzene. Thermogravimetric and differential scanning calorimetry analysis of untreated pitch revealed that the maximum temperature for mesophase nucleation should not exceed 410 °C to provoke the nucleation of mesophase spheres while maintaining a high pyrolysis yield. The extraction results showed that the extraction weight tends to decrease with an increase in the solvent ratio. There is an exponential relationship between the influence of solvent ratio and the ability for extraction. The solubility of the spherical mesophase in benzene is size-dependent and can dissolve selectively spherical mesophases smaller than 5 μm. Consequently, a monodisperse spherical mesophase was obtained. The reason for forming uniform mesophase spheres can be explained by their thermodynamic state, as described by the “two-step” classical nucleation theory. Benzene effectively improves the size distribution of spherical mesophase by dissolving small sizes while retaining large ones.
        4,000원
        15.
        2023.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Mesophase pitch is a unique graphitizable material that has been used as an important precursor for highly graphitic carbon materials. In the current study, we propose to consider a spinnable mesophase pitch as a lyotropic liquid crystalline solution composed of solvent components and liquid crystalline components, so-called mesogen or mesogenic components. Among mesophase pitches, the supermesophase pitch is defined as a mesohpase pitch with 100% anisotropy, and can only be observed in pitches with a proportion of mesogenic components exceeding the threshold concentration (TC). We also examined the critical limit of AR synthetic pitch and 5 experimental spinnable mesophase pitches (SMPs). Then, we examined the effect of the solvent component on the minimum required amount of mesogenic component using a selected solvent component instead of their own solvent components. AR pitch showed 100% anisotropy with the least amount of its mesogenic component, THF insoluble components, of 60 wt.%. The solvent component, THF soluble components, extracted from AR-pitch, which has a molecular weight pattern similar to that of the original material but more amount of naphthenic alkyl chains, showed better solvent functionality than those of other THF solubles (THFSs) from other as-prepared spinnable mesophase pitches. This is why a lower amount of AR THFS can produce a supermesophase pitch when combined with the THFI (mesogenic components) of other experimental mesophase pitches. As a result of the current analysis, we define the mesogens as molecules that not only readily stack, but also maintain stacking structures in a fused state in the solution. The solvent component, on the other hand, is defined as molecules with a structure that readily decomposes in a fused state in the solution.
        4,600원
        16.
        2023.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Coal tar pitch is a product with high carbon content and aromatic compounds. Modified coal tar pitch is a high quality raw material for the preparation of intermediate phase pitch, needle coke, carbon microspheres, et al. In this paper, modified coal tar pitch was used as raw material, nitrogen was used as protective gas, and thermal conversion was carried out at constant temperatures (370, 390, 410, 420 °C). Polarized light microscopy, SEM, elemental analysis, FTIR spectroscopy, Raman spectroscopy and XRD diffraction combined with split-peak fitting were used to characterize the microstructures of the thermal transformation products. The results showed that the Iar and CH3/ CH2 contents of the products increased with the gradual increase of the thermal conversion temperature, and the aromatic content increased. And the higher the temperature at the same heating rate, the more the ideal graphite microcrystal content, and the defective graphite microcrystals are converted into ideal graphite microcrystals during the thermal conversion process. When the reaction temperature exceeds 390 °C, the microstructure of the thermal transformation products is anisotropic spheres, and the small spheres fuse with each other and tend to be basin-like and mosaic structure as the temperature increases.
        4,200원
        17.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Most domestic pilots are trained at local airfields using propeller aircraft. Training aircraft are mainly trained in the airspace around the aerodrome, and mainly take-off and landing exercises that require a lot of practice among flight control skills. Aircraft noise is a sound that humans do not want. In this study, based on the Rotax 914 engine used in Korea, the propeller blade angle was changed by 1 degree for the 3-leaf “K company” propeller and the 3-leaf GSC wooden propeller, and the engine RPM was changed to examine the noise and thrust changes. The purpose of this study is to check whether noise and thrust loss are the least at the engine's maximum RPM, and to propose an aircraft operation plan in the noisy aerodrome area based on the values.
        4,000원
        18.
        2022.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The pitch-based activated carbon fibers (ACFs) were prepared from ethylene tar-derived pitches containing nickelocene (CNi) or nickel nitrate (NiN). The effects of different anions and contents of metal salts on the microstructure and surface chemical properties of fibers were investigated. The results revealed that Ni2+ from CNi mainly remained its pristine molecule in the organometal salt-derived pitch (OP-xCNi), while Ni2+ from NiN occurred complexation reaction with polycyclic aromatic hydrocarbons (PAHs) in the inorganic metal salt-derived pitch (IP-xNiN) due to the weaker binding ability between anions and Ni2+ of CNi than CNi. The XRD and SEM results confirmed that IP-3NiN-ACF contained Ni, NiO, Ni2O3 nanoparticles with different size distributions, while OP-3CNi-ACF only contained more uniformly distributed Ni nanoparticles with small size. Furthermore, OP-3.0CNi-ACF presented higher specific surface area of 1862 m2/ g and a pore volume of 1.69 cm3/ g than those of IP-3.0NiN-ACF due to the formation of pore structure during the in-situ catalytic activation of different metal nanoparticles. Therefore, this work further pointed out that the desired pore structure and surface chemistry of pitch-based ACFs could be obtained through regulating and controlling the interaction of anion species, metal cations and PAHs during the synthesis of pitch precursors.
        4,300원
        19.
        2022.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The facile production of high-purity mesophase pitch has been a long-standing desire in various carbon industries. Recently, polymer additives for mesophase production have attracted much attention because of their convenience and efficiency. We propose polyvinylidene fluoride (PVDF) as a strong candidate as an effective additive for mesophase production. The mesophase content and structural, chemical, and thermal properties of pitches obtained with different amounts of added PVDF are discussed. The influence of PVDF decomposition on mesophase formation is also discussed. We believe that this work provides an effective option for mesophase pitch production.
        4,000원
        20.
        2022.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Electrochemical reduction of carbon dioxide to valuable chemicals is a promising way of storing renewable energy through electric-to-chemical energy conversion, while its large-scale application is in urgent need of cheap and high-performance catalysts. Herein, we invent a convenient method to synthesize N-doped porous carbon by ammonia etching the pyrolysis carbon of petroleum pitch. We found the ammonia etching treatment not only increase the pyridinic-N content, but also enlarge the specific surface area of the petroleum pitch-based porous carbon. As a cheap and easily available catalyst for carbon dioxide electroreduction, up to 82% of Faradaic efficiency towards carbon monoxide was obtained at − 0.9 V vs the reversible hydrogen electrode in 0.1 M KHCO3. After a long time electrocatalysis of more than 20 h, the Faradaic efficiency of carbon monoxide remains 80%, indicating the porous carbon as made have an ultra-high stability as catalyst for carbon dioxide reduction. Our work provides a new technology to economically prepare efficient electrocatalysts for carbon dioxide reduction.
        4,000원
        1 2 3 4 5