도라지는 한국, 중국 그리고 일본에서 주로 재배되는 약용 작물이다. 도라지의 뿌리는 사포닌의 함량이 높고 기관지 보 호에 효과가 좋아 약재로 이용이 많이 될 뿐만 아니라 가공식 품, 화장품의 원료로 많이 이용되고 있다. 하지만 도라지의 대 량 생산을 위한 폐쇄형 식물 생산 시스템 내 적정 광 환경에 대 한 기초 데이터가 전무한 실정이다. 본 연구는 도라지의 광도 와 광주기를 구명하기 위해 수행되었다. 도라지는 온도 24.9 ± 0.9℃, 상대습도 53.7 ± 10.9%의 폐쇄형 식물 생산 시스템에 서 48일간 육묘하였다. 광도는 100, 150 및 200 ± 10μmol·m-2·s-1 그리고 광주기는 10/14, 12/12, 14/10h(명기/암기)로 처리하 였다. 가장 높은 광도인 200μmol·m-2·s-1에서 지상부 생육이 가장 우수하였고 12/12와 14/10h 사이에는 유의적인 차이가 나타나지 않았다. 200μmol·m-2·s-1에서 광주기 12/12h의 절 간장은 14/10h보다 유의적으로 짧았다. 200μmol·m-2·s-1에 서 지하부 생육의 경우 광주기 12/12h보다 14/10h의 생육이 우수하였다. 결론적으로, 200μmol·m-2·s-1, 12/12h는 도라지 공정 육묘의 광 환경으로 적합할 것으로 판단된다.
본 연구는 식물공장형 육묘시스템에서 광도 조절에 따른 수 박 접목묘의 생육 및 품질을 평가하기 위해 수행되었다. 수박 접수는 고온기 품종 ‘부라보꿀(BK)’, 저온기 품종 ‘산타꿀 (SK)’을 사용하였고, 대목으로 고온기 품종 ‘불로장생(BS)’, 저온기 품종 ‘동장군(DG)’을 사용하였다. 광도는 125 ± 25, 225 ± 25 및 325 ± 25μmol·m-2·s-1 3처리로 조정하여 실험을 진행하였다. 초장은 고온기 접목묘가 125 ± 25μmol·m-2·s-1, 저온기 접목묘가 225 ± 25μmol·m-2·s-1에서 가장 높았고, 줄 기 직경과 마디수는 고온기 접목묘, 저온기 접목묘 모두 225 ± 25μmol·m-2·s-1에서 가장 높았다. 근장과 엽면적은 고온기 접 목묘에서 325 ± 25μmol·m-2·s-1, 저온기 접목묘는 225 ± 25 μmol·m-2·s-1에서 가장 높았다. 또한 지상부 및 지하부 생체중 과 건물중은 225 ± 25μmol·m-2·s-1 처리에서 가장 높게 나타 났다. 충실도는 두 품종 모두 광도가 증가함에 따라 높아졌으 며, 특히 고온기 접목묘에서 그 효과가 두드러졌다. 엽면적비 (LAR)는 고온기 접목묘에서 광도 증가와 함께 유의하게 증가 하였으나, 저온기 접목묘에서 유의한 차이가 없었다. 종합적 으로 생육 특성은 225 ± 25μmol·m-2·s-1에서 높았으나, 묘소 질을 고려했을 때 325 ± 25μmol·m-2·s-1에서 더욱 강건한 묘 가 형성된 것으로 판단된다.
본 연구는 Tuned Mass Damper(TMD)가 적용된 원자력 발전소 파이핑 시스템의 동적 응답 저감 효과를 평가하기 위해 수행되었다. ABAQUS를 활용하여 실제 크기의 파이핑 시스템 유한요소 모델을 개발하고, 실험 데이터를 통해 모델의 적합성을 검증하 였다. 이후, 확장된 수치해석을 통해 국부 손상 발생 시 TMD의 응답 저감 효과를 분석하였다. 연구 결과, TMD는 무손상 상태에서 가속도와 변위 응답을 각각 최대 20%와 30% 저감하는 효과를 보였으며, 특정 국부 손상(30%, 50%, 70%)에서도 저감 효과가 유지됨 을 확인하였다. 이는 국부 손상이 시스템의 주파수 특성에 미치는 영향이 제한적임을 시사한다. 그러나 손상의 위치와 응답 특성에 따라 저감 효과에는 차이가 있었으며, 최대 응답 위치에서 TMD의 효과가 보다 두드러졌다. 본 연구는 선형 해석에 초점을 맞췄으며, 향후 비선형 재료 특성과 다양한 지진 조건을 고려한 추가 연구가 필요함을 제안한다.
Climate change has led to a significant increase in jellyfish populations globally, causing various problems. For power plants that use nearby seawater for cooling, the intrusion of jellyfish into intake systems can block the flow, leading to reduced output or even shutdowns. This issue is compounded by other small marine organisms like shrimp and salps, making it urgent to develop solutions to prevent their intrusion. This study addressed the problem using the BioSonics DT-X 120 kHz scientific fish finder to conduct preliminary tank experiments. We also deployed underwater acoustic and camera buoys around the intake of nuclear power plant, utilizing a bidirectional communication system between sea and land to collect data. Data collection took place from July 31, 2023 to August 1, 2023. While harmful organisms such as jellyfish and salps were not detected, we successfully gathered acoustic data on small fish measuring backscattering strength (SV). Analysis showed that fish schools were more prominent in the evening than during the day. The highest fish distribution was observed at 3:30 AM on July 31 with an SV of -44.8 dB while the lowest was at 12:30 PM on the same day with an SV of –63.4 dB. Additionally, a solar-powered system was used to enable real-time data acquisition from sea buoys with smooth communication between the land server and the offshore buoy located 1.8 km away. This research developed an acoustic-based monitoring system for detecting harmful organisms around the intake and provided foundational data for preventing marine organism intrusion and planning effective measures.
In response to the global transition towards carbon neutrality, there's an increasing emphasis on sustainable energy solutions, with offshore wind power playing a crucial role, especially in South Korea. This study presents an AI-based safety management system specifically designed for offshore wind operators. At the heart of this system is a machine learning algorithm that processes sensor data to automatically recognize human behavior and improve the accuracy of predicting worker actions and conditions. Such predictive analytics not only refines the analysis of behavioral patterns, but also increases the effectiveness of accident prevention. The results of this research are expected to significantly improve safety measures in offshore wind facilities and further sustainable energy initiatives.
We established a soybean banker plant system and evaluated the biological control effects of aphid control in bell pepper greenhouses. The soybean banker plant was B.communis breeding system and developed as an alternative aphid control agent to the most common Barley banker(Barley-Colemani). After inoculating approximately 50 soybean aphids(Aphis glycines, aphid starter population) on 2 week old soybean seedling pot after sowing and then releasing aphid parasitoids, an average of 348.7 parasitic wasps per a soybean banker plant could be produced without additional host aphid inoculation. Common recommendation for installation in the greenhouses are about 2 soybean banker plants per 330㎡ before or immediately after planting. If the number of aphids per stem is fewer than three on 2 weeks after installation of the banker plant, additional supplementation of 20~30 aphids is necessary to maintain this system for one month. When one soybean banker plant was installed per 120㎡, the aphid control effect was about 60% on the 21st day after installation.
Spodoptera 속의 담배거세미나방, 열대거세미나방 및 파밤나방은 여러 나라에 분포하는 광식성 해충으로, 본 연구에서는 이들의 페로몬 및 식물냄새물질과 관련한 화학통신시스템에 대해 이해하기 위해 냄새감각기의 종류와 분포, 냄새활성물질 동정 및 야외행동 반응에 대한 연구를 진행하였다. 주사전자현미경 관찰을 통해, 세 종 나방의 암, 수컷 촉각에 여러 종류의 냄새감각기가 존재하며, 형태적으로 구분되는 종특이적 또는 성특이적 냄새감각기들이 존재한다는 것을 확인하였다. GC-EAD 실험을 통해 세 종 나방에 냄새활성을 나타내는 식물 냄새물질과 페로몬 관련 물질들을 동정하고, 이들을 개별 또는 조합하여 야외 트랩실험을 통해 행동활성을 검정 한 결과, 이 중 여러 물질이 담배거세미나방과 파밤나방의 성페로몬에 대한 유인행동 반응을 저해하는 것을 알 수 있었다. 열대거세미나방은 발생이 저조하여 야외에서의 행동반응을 확인할 수 없었다.
Kori Unit 1 nuclear power plant is a pressurized water reactor type with an output of 587 Mwe, which was permanently shut down on June 18, 2017. Currently, the final decommissioning plan (FDP) has been submitted and review is in progress. Once the FDP is approved, it is expected that dismantling will begin with the secondary system, and dismantling work on the primary system of Kori Unit 1 will begin after the spent nuclear fuel is taken out. It is expected that the space where the secondary system has been dismantled can be used as a temporary storage place, and the entire dismantling schedule is expected to proceed without delay. The main equipment of the secondary system is large and heavy. The rotating parts is connected to a single axis with a length of about 40 meters, and is complexly installed over three floors, making accessibility very difficult. A large pipe several kilometers long that supplies various fluids to the secondary system is installed hanging from the ceiling using a hanger between the main devices, and the outer diameter of the pipe is wrapped with insulation material to keep warm. In nuclear secondary system decommissioning, it is very important to check for radiation contamination, establish and implement countermeasures, and predict and manage safety and environmental risks that may occur when cutting and dismantling large heavy objects. So we plan to evaluate the radiation contamination characteristics of the secondary system using ISOCS (In- Situ Object Counting System) to check for possible radioactive contamination. According to the characteristics results, decommissioning plans and methods for safe dismantling by workers were studied. In addition, we conducted research on how to safely dismantle the secondary system in terms of industrial safety, such as asbestos, cutting and handling of heavy materials and so on. This study proposes a safe decommissioning method for various risks that may occur when dismantling the secondary system of Kori Unit 1 nuclear power plant.
Domestic nuclear power plants can affect the environment if multiple devices are operated on one site and even a trace amount of pollutants that may affect the environment after power generation are simultaneously discharged. Therefore, not only radioactive substances but also ionic substances such as boron should be discharged as minimally as possible. We adopted pilot CDI and SD-ELIX sytem to separating and concenrating of boron containing nulcear power plant discharge water. The boron concentration of the initial inflow water tended to decrease over time. The water quality of concentrated water also reached its peak until the initial 60 minutes, but tended to decrease in line with the decrease in the inflow water concentration. The boron removal rate was in the range of 85 to 99% with respect to the initial boron concentration of 15 to 25 mg/L. On the other hand, performance degradation due to the use of electrochemical modules is also observed, and regeneration through low ion-containing water cleaning effective. We shortened processing time by considering the optimal flow rate conditions and conductivity conditions and converting electrochemical modules into series or parallel.
This study was conducted to investigate the growth characteristics of cucumber (Cucumis sativus L. ‘Joeunbaekdadagi’) and tomato (Solanum lycopersicum L. ‘Dotaerang Dia’) seedlings by light intensities and CO2 concentrations in a closed-type plant production system (CPPS). Cucumber and tomato seeds were sown in 50-cell trays and germinated in CPPS at air temperature 25 ± 1°C and relative humidity 50 ± 10% for 4 days. After germination, the CO2 concentrations and light intensity treatment were treated at 500 (ambient), 1,000, and 1,500 μmol·mol-1 and 100, 200, and 300 μmol·m-2·s-1 photosynthetic photon flux density (PPFD), respectively. The leaf area of cucumber showed the highest value in CO2 1,500 μmol·mol-1. However, the leaf area of the tomato had no significant difference in CO2 concentrations and light intensities treatments. In cucumber and tomato both seedlings, the growth and quality such as compactness and leaf area rate were increased with the increase of light intensity, and there were highest in 300 μmol·m-2·s-1. The root surface and number of root tips of cucumber and tomato seedlings were significantly increased with the increase in light intensity. In conclusion, the regulation of the CO2 concentrations and light intensity can control the growth and quality of cucumber and tomato seedlings in CPPS, especially, increasing the light intensity can improve more significantly the growth and quality of seedlings.
본 연구는 DFT 재배 시스템을 이용한 밀폐형 식물생산시스 템에 MB처리 유무에 따른 상추(Lactuca sativa L.)와 배초향 (Agastache rugosa Kuntze)의 생육과 양액 특성을 조사하기 위해 수행되었다. 상추와 배초향은 밀폐형 식물생산시스템에 서 23일간 재배되었다. MB는 매일 9시, 13시, 17시에 5분씩 16일간 처리하였다. 상추와 배초향의 엽장, 엽폭, 엽면적, 생 체중 및 건물중은 MB처리구에서 대조구에 비해 유의하게 낮 았다. 상추와 배초향의 총 뿌리길이, 뿌리 표면적, 근단 수도 MB처리구에서 유의적으로 낮게 나타났다. 평균 뿌리 직경의 경우, 상추는 처리 간에 차이가 없었으나, 배초향은 MB처리 구에서 유의적으로 굵어 종 간에 차이가 있음을 확인하였다. 본 연구 결과, DFT 방식으로 상추와 배초향을 재배할 때 MB 처리는 비생물적 스트레스를 유발하여 생육을 억제하는 것으 로 나타났다.
This study was aimed to determine the effects of grow media on the mineral contents of the leaves and growth characteristics of strawberry grown under aquaponics system in a plant factory. For aquaculture, 12 fish (Cyprinus carpio) (total weight, 2.0 kg) were raised in an aquaponics tank (W 0.7 m × L 1.5 m × H 0.45 m, 472.5 L) filled with 367.5 L of water at a density of 5.44 kg·m-3 and total 34 of strawberry seedlings were transplanted in the pots filed with 200 g of orchid stone, hydroball or polyurethane sponge in the growing bed (W 0.7 m × L 1.5 m × H 0.22 m) laid out with holly acrylic sheet (140×60 mm, Ø80) on the top of the system. The pH and EC of the aquaponic solution was ranged from 7.6 to 4.9 and 0.24-0.91 dS·m-1, respectively. The concentration of NO3-N was about 28% lower than that of the hydroponic standard solution, and K, Fe and B were 10, 27 and 3.8 times lower, respectively; however, the mineral contents of strawberry leaves were in the appropriate ranges with lower contents in the leaves grown with sponge media. The organic content (OM), nitrogen (N), phosphorus (P), and potassium (K) of the sludge were 61.5, 5.72, 8.92, and 0.24%, respectively. The leaf area, leaf number, and dry and fresh weights of shoot at 81 DAT were significantly higher in the hydroball, and the average number of fruits per plant was significantly higher in both the orchid stone and hydroball. There was no significant difference in the fresh and dry weights of fruits. Integrated all the results suggest that the orchid stone and hydroball media are more effective to utilize nutrients in solid particles of aquaponic solution, compared to the polyurethane sponge.
To improve the safety of tap water, a study was conducted on the introduction of sanitation safety certification system for water treatment plants(WTPs). In order to produce and supply safe tap, the inflow of pollutants should be blocked as much as possible during the tap water production process, and contaminated materials should be removed or inactivated to a safe level in the WTPs. In order to block the inflow of pollutants in WTPs, it is necessary to strengthen the sanitation management such as installation of facilities for preventing inflow and habitat of larvae, and to remove or inactivate pollutants in the tap water production process, strengthening the safety management such as enhanced turbidity management is needed. Sanitation and safety management in the WTPs can be significantly improved by introducing certification system of WTPs. This will induce continuous improvement in water purification plants with insufficient sanitation and safety management, and provide incentives for WTPs with good sanitation and safety management. In addition, when the WTPs sanitation and safety certification system is established, it is desirable to expand the proposed system from WTPs to the entire process of tap water production and supply.
Growth modeling in plant factories can not only control stable production and yield, but also control environmental conditions by considering the relationship between environmental factors and plant growth rate. In this study, using the expolinear function, we modeled perilla [Perilla frutescens (L.) Britt.] cultivated in a plant factory. Perilla growth was investigated 12 times until flower bud differentiation occurred after planting under light intensity, photoperiod, and the ratio of mixed light conditions of 130 μmol·m-2·s-1, 12/12 h, red:green:blue (7:1:2), respectively. Additionally, modeling was performed to predict dry and fresh weights using the expolinear function. Fresh and dry weights were strongly positively correlated (r = 0.996). Except for dry weight, fresh weight showed a high positive correlation with leaf area, followed by plant height, number of leaves, number of nodes, leaf length, and leaf width. When the number of days after transplanting, leaf area, and plant height were used as independent variables for growth prediction, leaf area was found to be an appropriate independent variable for growth prediction. However, additional destructive or non-destructive methods for predicting growth should be considered. In this study, we created a growth model formula to predict perilla growth in plant factories.
Regulations on the concentration of boron discharged from industrial facilities, including nuclear power plants, are increasingly being strengthened worldwide. Since boron exists as boric acid at pH 7 or lower, it is very difficult to remove it in the existing LRS (Liquid Radwaste System) using RO and ion exchange resin. As an alternative technology for removing boron emitted from nuclear power plants, the electrochemical boron removal technology, which has been experimentally applied at the Ringhal Power Plant in Sweden, was introduced in the last presentation. In this study, the internal structure of the electrochemical module was improved to reduce the boron concentration to 5 mg/L or less in the 50 mg/L level of boron-containing waste liquid. In addition, the applicability of the electrochemical boron removal technology was evaluated by increasing the capacity of the unit module to 1 m3/hr in consideration of the actual capacity of the monitor tank of the nuclear power plant. By applying various experimental conditions such as flow rate and pressure, the optimum boron removal conditions using electrochemical technology were confirmed, and various operating conditions necessary for actual operation were established by configuring a concentrated water recirculation system to minimize secondary waste generation. The optimal arrangement method of the 1 m3/hr unit module developed in this study was reviewed by performing mathematical modeling based on the actual capacity of monitor tank and discharge characteristics of nuclear power plant.