검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 16

        1.
        2024.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        To improve the lithium-ion battery performance and stability, a conducting polymer, which can simultaneously serve as both a conductive additive and a binder, is introduced into the anode. Water-soluble polyaniline:polystyrene sulfonate (PANI:PSS) can be successfully prepared through chemical oxidative polymerization, and their chemical/mechanical properties are adjusted by varying the molecular weight of PSS. As a conductive additive, the PANI with a conjugated double bond structure is introduced between active materials or between the active material and the current collector to provide fast and short electrical pathways. As a binder, the PSS prevents short circuits through strong π‒π stacking interaction with active material, and it exhibits superior adhesion to the current collector, thereby ensuring the maintenance of stable mechanical properties, even under high-speed charging/discharging conditions. Based on the synergistic effect of the intrinsic properties of PANI and PSS, it is confirmed that the anode with PANI:PSS introduced as a binder has about 1.8 times higher bonding strength (0.4 kgf/20 mm) compared to conventional binders. Moreover, since active materials can be additionally added in place of the generally added conductive additives, the total cell capacity increased by about 12.0%, and improved stability is shown with a capacity retention rate of 99.3% even after 200 cycles at a current rate of 0.2 C.
        4,000원
        2.
        2024.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The lithium-ion battery has been utilized in various fields including energy storage system, portable electronic devices and electric vehicles due to their high energy and power densities, low self-discharge, and long cycle-life performances. However, despite of various research on electrode materials, there is a lack of research on developing of binder to replace conventional polymer-based binding materials. In this work, petroleum pitch (MP-50)/polymer (polyurethane, PU) composite binder for lithium-ion battery has fabricated not only to use as a binding material, but also to re-place conventional polymer-based binder. The MP-50/PU composite binder has also prepared to various ratios between petroleum pitch and polymer to optimize the physical and electro-chemical performance of the lithium-ion battery based on the MP-50/PU composite binder. The physical and electrochemical performances of the MP-50/PU composite binder-based lithium-ion battery were evaluated using a universal testing machine (UTM), charge/discharge test. As a result, lithium-ion battery based on the MP-50/PU composite (5:5, mass ratio) binder showed optimized performances with 1.53 gf mm− 1 of adhesion strength, 341 mAh g− 1 of specific discharge capacity and 99.5% of ICE value.
        4,000원
        3.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The lithium ion battery has applied to various fields of energy storage systems such as electric vehicle and potable electronic devices in terms of high energy density and long-life cycle. Despite of various research on the electrode and electrolyte materials, there is a lack of research for investigating of the binding materials to replace polymer based binder. In this study, we have investigated petroleum pitch/polymer composite with various ratios between petroleum pitch and polymer in order to optimize the electrochemical and physical performance of the lithium-ion battery based on petroleum pitch/polymer composite binder. The electrochemical and physical performances of the petroleum pitch/polymer composite binder based lithium-ion battery were evaluated by using a charge/discharge test, cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and universal testing machine (UTM). As a result, the petroleum pitch(MP-50)/polymer(PVDF) composite (5:5 wt % ratio) binder based lithium-ion battery showed 1.29 gf mm-1 of adhesion strength with 144 mAh g-1 of specific dis-charge capacity and 93.1 % of initial coulombic efficiency(ICE) value.
        4,000원
        4.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        세라믹 분리막은 높은 열적, 화학적 안정성을 갖기 때문에 극한의 조건에서 운전되는 다양한 산업 공정에 적용할 수 있다. 그러나 투과도와 기계적 강도의 trade-off 현상에 의한 세라믹 분리막 활용에 제약이 있어, 고투과성-고강도 분리막 의 개발이 필요하다. 본 연구에서는 상전이-압출법으로 알루미나 중공사 분리막을 제조하고, 고분자 바인더의 종류와 그 혼합 비에 따른 분리막의 특성 변화를 관찰하였다. 용매인 DMAc (Dimethylacetamide)와 고분자 바인더의 한센 용해도 인자를 비 교하면, PSf (polysulfone)가 DMAc와 높은 용해도 특성을 갖기 때문에 도프 용액의 점도와 토출압력이 높게 나타나 분리막 내부가 치밀한 구조로 형성되기 때문에 높은 기계적 강도를 갖으나 수투과도가 감소하는 것으로 확인되었다. 그에 반해, PES (polyethersulfone)를 이용하여 분리막을 제조하면 기계적 강도가 다소 감소하고 수투과도가 증가하는 것으로 나타났다. 따라 서 분리막 성능과 물성을 최적화하기 위해 PSf와 PES를 혼합하여 분리막을 제조하였으며, 9:1로 혼합하여 제조된 분리막에 서 최적화된 수투과도와 기계적 강도를 얻을 수 있었다.
        4,000원
        10.
        2018.05 구독 인증기관·개인회원 무료
        This study was conducted to develop a heat interception permeability aggregate pavement material that resists increase of air temperature and has permeability by decreasing pavement temperature of city in summer. For this study, a heat interception polymer binder mixed with heat interception material and polyurethane binder. And the study made heat interception permeability aggregate pavement material by mixing heat interception polymer binder. Using the materials, the study conducted flexural strength test and temperature reduction effect experiment. As the result, flexural strength was 5.43MPa average and the temperature reduction effect was effective up to maximum 16 degrees Celsius compared to current asphalt concrete.
        11.
        2012.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES: SUPERPAVE binder grade tests including Multiple Stress Creep and Recovery(MSCR) test are applied to evaluate rheological properties of four polymer modified binders. METHODS: To evaluate grade of four modified binders, PG testing protocols, such as DSR, BBR and MSCR are employed. RESULTS: It is observed that MSCR test shows different performance grades especially on modified binders. Both DMP and EG binder show similar high temperature performance to SBS 5% modified binder. CONCLUSIONS: Binder Grading system in Korea need to be reviewed to properly reflect the performnace of modified binders. The binders modified with DMP and EG can be possible alternatives SBS 5% modified binder considering its performance and cost.
        4,000원
        12.
        2012.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : This study deals with the working life of polymer concrete, which is typically used as a repair or overlay material for portland cement concrete pavements. METHODS : In the scope of this study, laboratory testing was conducted on fresh MMA modified UP polymer concrete, which uses an MMA monomer for viscosity adjustment and strength improvement of UP resin. The experimental variables were temperature (-20 to +20℃) and binder components (MMA, MEKPO, and DMA). RESULTS : The result showed that the optimum binder ratios for polymer concrete production were 12, 11, and 10 wt.% when the MMA contents were 20, 30, and 40 wt.%, respectively. The working life of polymer concrete depending on temperature and binder components could be expressed by a logarithmic functional formula. The coefficient of variation for each binder component was the highest for DMA content while the lowest for MEKPO content. Also, the contents of each binder component for ensuring the working life of 60 minutes were proposed. CONCLUSIONS : Ultimately, the present study derived a linear regression equation estimating 60 minutes working life based on the setting times of each binder component.
        4,200원
        15.
        2017.07 KCI 등재 서비스 종료(열람 제한)
        Even though cement a major foundational ingredient in modern architecture, it is known to destroy the environment due to its high energy consumption and how its production releases large amounts of carbon dioxide. To address this situation, the cement industry has proceeded to study how to reduce the amount of CO2 released and has recently started developing unused non-sintered cement. Inaddition, studies are in active development for cement that has not gone through the burning process. If it is possible to make cement using blast furnace slag and industry outgrowth without the use of clinker, it can be expected to help when running out of limestone and to mitigate the pollution problem through CO2 emissions. This study apprehended the measurement of kinematical characteristics through measuring polymer nonsintered cement flexural and compressive strength and analyzing the pH · Cl− Penetration Depth characteristic, through the SEM test also analyzes the reaction of the hydration mechanism, the result of decrementing the water/cement ratio, and entrained air contents from the mixing of polymer, and conducts that durability test for the absorption rate and carbonation experiments. The results of experimentation show excellent chemical and mechanical properties compared to ordinary Portland cement.
        16.
        2012.11 서비스 종료(열람 제한)
        This research was performed to evaluate physical properties of polysulfide epoxy overlay material for bridge deck, as part of a review for possibility of domestic of epoxy polymer concrete binder for thin bridge deck pavements. After mix test, carry out experiment such as harden, viscosity, tensile, compressive strength and Ultraviolet ray test for evaluate strength and durability characteristics. The tests showed that the results, met the criteria suggested by the ACI in hardness, viscosity, tensile strength and compressive strength. Furthemore, a comparsion of the in this study and goods of Transpo.co in USA, this study were excellent.