검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 19

        2.
        2021.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The high level of lithium storage in synthetic porous carbons has necessitated the development of accurate models for estimating the specific capacity of carbon-based lithium-ion battery (LIB) anodes. To date, various models have been developed to estimate the storage capacity of lithium in carbonaceous materials. However, these models are complex and do not take into account the effect of porosity in their estimations. In this paper, a novel model is proposed to predict the specific capacity of porous carbon LIB anodes. For this purpose, a new factor is introduced, which is called normalized surface area. Considering this factor, the contribution of surface lithium storage can be added to the lithium stored in the bulk to have a better prediction. The novel model proposed in this study is able to estimate the lithium storage capacity of LIB anodes based on the porosity of porous carbons for the first time. Benefiting porosity value (specific surface area) makes the predictions quick, facile, and sensible for the scientists and experts designing LIBs using porous carbon anodes. The predicted capacities were compared with that of the literature reported by experimental works. The remarkable consistency of the measured and predicted capacities of the LIB anodes also confirms the validity of the approach and its reliability for further predictions.
        4,000원
        4.
        2019.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Microtextural and surface chemical heterogeneities of activated carbons (AC) have been studied to see their distinctive role for the adsorption of CO2, CO and N2 at 25 °C and up to 850 Torr. Not only the microtextural properties influence the adsorption of the gases, particularly CO2, but the chemical surface heterogeneity also plays a significant role for CO2 adsorption. The volume of ultramicropores < 7 Å is of predominantly importance in high CO2 adsorption at pressures above 30 Torr. However, the average size of micropores and their size distribution, and the chemical surface heterogeneity are much more critical at the Henry’s law region (< 30 Torr). The latter could be well characterized by the amount and Henry constant of CO2 adsorption at the low pressures, the Toth model parameters, the change in CO2/ CO and CO2/ N2 selectivities with respect to pressure, the amount of CO from the thermal decomposition, and the direct probing of very strong basicity sites using a technique that is the temperature-programmed desorption of CO2 adsorbed. All of them are consistent with the difference in the energetic nonuniformity between ACs studied, except for the last measure whose results could be reasonably explained when combining with the microtextural heterogeneity.
        4,600원
        6.
        2018.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        High surface carbon aerogels with hierarchical and tunable pore structure were prepared using ionic liquid as carbon precursor via a simple salt templating method. The as-prepared carbon aerogels were characterized by nitrogen sorption measurement and scanning electron microscopy. Through instant visual observation experiments, it was found that salt eutectics not only serve as solvents, porogens, and templates, but also play an important role of foaming agents in the preparation of carbon aerogels. When the pyrolyzing temperature rises from 800 to 1000°C, the higher temperature deepens the carbonization reaction further to form a nanoporous interconnected fractal structure and increase the contribution of super-micropores and small mesopores and improve the specific surface area and pore volume, while having few effects on the macropores. As the mass ratio of ionic liquid to salt eutectics drops from 55% to 15%, that is, the content of salt eutectics increases, the salt eutectics gradually aggregate from ion pairs, to clusters with minimal free energy, and finally to a continuous salt phase, leading to the formation of micropores, uniform mesopores, and macropores, respectively; these processes cause BET specific surface area initially to increase but subsequently to decrease. With the mass ratio of ionic liquids to salts at 35% and carbonization temperature at 900°C, the specific surface area of the resultant carbon aerogels reached 2309 m2 g–1. By controlling the carbonization temperature and mass ratio of the raw materials, the hierarchically porous architecture of carbon aerogels can be tuned; this advantage will promote their use in the fields of electrodes and adsorption.
        4,000원
        8.
        2017.11 구독 인증기관·개인회원 무료
        본 연구에서는 Polyvinylidene Fluoride(PVDF)와 Polyacrylonitrile(PAN)의 중공 사막 표면에 계면중합하여 복합막을 제조하였다. 지지체 중공사 막은 기존에 상 용화된 제품을 사용하였고, Poly(4-styrene sulfonic acid)(PSSA)와 Polyetherimide 의 농도변화, 이온세기의 변화, 코팅시간의 변화에 따라 막을 제조하였다. 제조한 막의 특성평가를 위해 NaCl, MgCl2, CaSO4 100ppm의 공급액을 이용하여 일정 가동압력과 공급유량에서 막의 투과도와 배제율을 측정하였다.
        9.
        2016.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study is performed to fabricate a Ti porous body by freeze drying process using titanium hydride (TiH2) powder and camphene. Then, the Ti porous body is employed to synthesize carbon nanotubes (CNTs) using thermal catalytic chemical vapor deposition (CCVD) with Fe catalyst and methane (CH4) gas to increase the specific surface area. The synthesized Ti porous body has 100 μm-sized macropores and 10-30 μm-sized micropores. The synthesized CNTs have random directions and are entangled with adjacent CNTs. The CNTs have a bamboo-like structure, and their average diameter is about 50 nm. The Fe nano-particles observed at the tip of the CNTs indicate that the tip growth model is applicable. The specific surface area of the CNT-coated Ti porous body is about 20 times larger than that of the raw Ti porous body. These CNT-coated Ti porous bodies are expected to be used as filters or catalyst supports.
        4,000원
        11.
        2014.01 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, synthetic viscose rayon fabric has been used for preparing activated carbon fabric (ACF), impregnated with different concentrations of H3PO4. The effect of H3PO4 im-pregnation on the weight yield, surface area, pore volume, chemical composition and mor-phology of ACF were studied. Experimental results revealed that both Brunauer-Emmett-Teller surface area and micropore volume increased with increasing H3PO4 concentration; however, the weight yield and microporosity (%) decreased. It was observed that samples impregnated at 70°C (AC-70) give higher yield and higher microporosity as compared to 30°C (AC-30). The average pore size of the ACF also gradually increases from 18.2 to 19 and 16.7 to 20.4 Å for 30°C and 70°C, respectively. The pore size distribution of ACF was also studied. It is also concluded that the finalACF strength is dependent on the concentra-tion of impregnant.
        4,000원
        12.
        2013.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Al-based alloys have recently attracted considerable interest as structural materials and light weight materials due to their excellent physical and mechanical properties. For the investigation of the potential of Al-based alloys, a surface porous Al88Cu6Si6 eutectic alloy has been fabricated through a chemical leaching process. The formation and microstructure of the surface porous Al88Cu6Si6 eutectic alloy have been investigated using X-ray diffraction and scanning electron microscopy. The Al88Cu6Si6 eutectic alloy is composed of an α-Al dendrite phase and a single eutectic phase of Al2Cu and α-Al. We intended to remove only the α-Al phase and then the Al2Cu phase would form a porous structure on the surface with open pores. Both acidic and alkaline aqueous chemical solutions were used with various concentrations to modify the influence on the microstructure and the overall chemical reaction was carried out for 24 hr. A homogeneous open porous structure on the surface was revealed via selective chemical leaching with a H2SO4 solution. Only the α-Al phase was successfully leached while the morphology of the Al2Cu phase was maintained. The pore size was in a range of 1~5μm and the dealloying depth was nearly 3μm. However, under an alkaline NaOH, aqueous solution, an inhomogeneous porous structure on the surface was formed with a 5 wt% NaOH solution and the morphology of the Al2Cu phase was not preserved. In addition, the sample that was leached by using a 7 wt% NaOH solution crumbled. Al extracted from the Al2Cu phase as α-Al phase was dealloyed, and increasing concentration of NaOH strongly influenced the morphology of the Al2Cu phase and sample statement.
        4,000원
        13.
        2009.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        To improve the filtration efficiency of porous materials used in filters, an extensive specific surface area is required to serve as a site for adsorption of impurities. In this paper, a method for creating a hybridized porous alloy using a powder metallurgical technique to build macropores in an Al-4 wt.% Cu alloy and subsequent surface modification for a microporous surface with a considerably increased specific surface area is suggested. The macropore structure was controlled by granulation, compacting pressure, and sintering; the micropore structure was obtained by a surface modification using a dilute NaOH solution. The specific surface area of surface-modified specimen increased about 10 times compare to as-sintered specimen that comprised of the macropore structure. Also, the surface-modified specimens showed a remarkable increase in micropores larger than 10 nm. Such a hybridized porous structure has potential for application in water and air purification filters, as well as membrane pre-treatment and catalysis.
        4,000원
        14.
        2008.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Porous Ti implant samples were fabricated by the sintering of spherical Ti powders in a high vacuum furnace. To increase their surface area and biocompatibility, anodic oxidation and a hydrothermal treatment were then applied. Electrolytes in a mixture of glycerophosphate and calcium acetate were used for the anodizing treatment. The resulting oxide layer was found to have precipitated in the phase form of anatase TiO2 and nano-scaled hydroxyapatite on the porous Ti implant surface. The porous Ti implant can be modified via an anodic oxidation method and a hydrothermal treatment for the enhancement of the bioactivity, and current multi-surface treatments can be applied for use in a dental implant system.
        4,000원
        16.
        2006.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Surface fog coating methods to porous pavements with a polymer, that contains MMA as a main ingredient, are being widely used in Japan and called 'Top-Coat Processes'. They have lots of effects such as to prevention of the pavement void choking, improvement of the water permeability of the pavements and so on. The purpose of this research is to show the characterization of the polymer to optimize the functions of the polymer fog-coat methods. This study focused on the difference of 'wetting' by water among polymers used for the fog coatings, and calculation the surface free energy from the water contact angle on each material. At the end, the water permeability test were conducted using porous asphalt mixtures that were coated with several kinds of polymers. The permeability was also measured on the specimens that were forcibly choked by muddy water and the resistance to choking was compared. It is concluded that the reduction of the surface free energy between water and a polymer improves the life of the permeability functions of porous pavements. Improvement of water permeation capacity and void-blocking controlling effects can be quantitatively evaluated using the interfacial tension (γsl) with water for the coating material (high-viscosity asphalt and hardening resin binder). Consequently, the smaller the γsl of the coating material the higher the water permeation capacity and void-blocking controlling effects of the porous asphalt pavements.
        4,000원
        19.
        1994.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        HF-HNO3계의 화학용액에서 실리콘웨이퍼를 식각함으로써 실온에서 자외선 조사에 의해 가시광을 발광하는 다공질실리콘(porous-Si)을 형성하였으며, 이렇게 형성시킨 다공질 실리콘의 발광특성고 표면형상을 각각 photoluminescence(PL)측정과 atomic force microscopy(AFM)를 이용하여 조사하였다. HF:HNO3: H2O=1 : 5 : 10인 용액을 이용하여 다공질실리콘을 형성시킬때 식각시간에 따른 다공질실리콘의 PL강도 및 표면형상의 변화를 관찰한 결과 1-10분의 영역에서 식각시간을 변화시켰을때 식각시간에 따라 표면의 색깔이 변하였으며 5분간 식각시켰을 경우 표면의색깔은 오렌지 색을 가지고 가장 강한 PL 강도를 보였다. 그리고 AFM관측결과 식각시간이 길어짐에 따라 다공질실리콘의 표면형상크기(surface feature size)가 점점 작아져 5분간 식각시킨 시료의 표면형상 크기는 1,5000~2,000Å범위이며, PL강도가 다공질실리콘의 표면형상과 관계가 있음을 알 수 있었다.
        4,000원