검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 180

        1.
        2024.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, a performance evaluation was conducted on a composite elastic asphalt precast expansion joint developed to replace steel expansion joints that frequently suffer from various damages, such as blow-up owing to increased traffic volume and abnormal weather. Two types of elastic asphalt binders were prepared by mixing a latex-based modifier, and their basic properties and performance were evaluated. Elastic asphalt binders were mixed with 8–13 and 13–19 mm aggregates to prepare elastic asphalt joint mixtures, and their permanent deformation and adhesive performance were evaluated using Hamburg wheel-tracking and direct-shear tests. Elastic asphalt joint blocks and internal reinforcement for crack prevention were applied to produce the elastic composite expansion joints, and their performance was evaluated through contraction–extension tests to determine fatigue cracking, maximum load during contraction– extension, and repeated contraction–extension tests. As a result of the performance evaluation of the developed elastic asphalt binder, both the high- and low-temperature performances were improved, and the temperature sensitivity was superior to that of general asphalt binders, exhibiting high resistance to cracking. In addition, the joint block specimens manufactured by mixing the elastic asphalt binder with 13–19 mm aggregates exhibited excellent permanent deformation in the dynamic stability and Hamburg wheel-tracking tests, and they had higher adhesive performance than the method of repairing with rapid-hardening concrete materials at low and room temperatures, where significant contraction of the concrete joint occurs. We confirmed that when a compression spring-type reinforcement was applied, the compressive force for contraction decreased significantly compared with the unreinforced state, and the tensile force for extension increased, thereby reducing the stress applied to the mixture itself. The composite elastic asphalt precast expansion joint developed in this study is expected to have superior durability against cracks and secure continuity with the road surface through the tensile force dispersing effect using expansion reinforcement. Thus, it has better drivability than the existing steel expansion joint and can absorb shocks such as vibrations and noise applied to a structure.
        4,000원
        2.
        2024.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The precast concrete (PC) method allows for simple assembly and disassembly of structures; however, ensuring airtight connections is crucial to prevent energy loss and maintain optimal building performance. This study focuses on the analytical investigation of the shear capacity of precast ultra-high-performance concrete (UHPC) ribs combined with standard concrete PC cladding walls. Five specimens were tested under static loading conditions to evaluate their structural performance and the thermal behavior of the UHPC rib shear keys. Test results indicated that the specimens exhibited remarkable structural performance, with shear capacity approximately three times greater than that of standard concrete. Numerical models were subsequently developed to predict the shear capacity of the shear keys under various loading conditions. A comparison between the experimental results and finite element (FE) models showed a maximum strength difference of less than 10% and a rib displacement error of up to 1.76 mm. These findings demonstrated the efficiency of the FE model for the simulation of the behavior of structures.
        4,000원
        3.
        2024.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Due to the recent increase in domestic seismic activity and the proliferation of PC structure buildings, there is a pressing need for a fundamental study to develop and revise the design criteria for Half-PC slabs. In this study, we propose criteria for determining the rigid diaphragm based on the aspect ratio of Half-PC slabs and investigate the structural effects based on the presence of chord element installation. This study concluded that Half-PC slabs with an aspect ratio of 3.0 or lower can be designed as rigid diaphragms. When chord elements are installed, it is possible to design Half-PC slabs with an aspect ratio of 4.0 or lower as rigid diaphragms. In addition, the increase in the aspect ratio of the Half-PC slab leads to a decrease in the in-plane stiffness of the structure, confirming that the reduction effect of the maximum displacement in force direction (max ) due to the increase in wall stiffness is predominantly influenced by flexibility.
        4,000원
        4.
        2024.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Code-compliant seismic design should be essentially applied to realize the so-called emulative performance of precast concrete (PC) lateral force-resisting systems, and this study developed simple procedures to design precast industrial buildings with intermediate precast bearing wall systems considering both the effect of seismic and blast loads. Seismic design provisions specified in ACI 318 and ASCE 7 can be directly adopted, for which the so-called 1.5S y condition is addressed in PC wall-to-wall and wall-to-base connections. Various coupling options were considered and addressed in the seismic design of wall-to-wall connections for the longitudinal and transverse design directions to secure optimized performance and better economic feasibility. On the other hand, two possible methods were adopted in blast analysis: 1) Equivalent static analysis (ESA) based on the simplified graphic method and 2) Incremental dynamic time-history analysis (IDTHA). The ESA is physically austere to use in practice for a typical industrial PC-bearing wall system. Still, it showed an overestimating trend in terms of the lateral deformation. The coupling action between precast wall segments appears to be inevitably required due to substantially large blast loads compared to seismic loads with increasing blast risk levels. Even with the coupled-precast shear walls, the design outcome obtained from the ESA method might not be entirely satisfactory to the drift criteria presented by the ASCE Blast Design Manual. This drawback can be overcome by addressing the IDTHA method, where all the design criteria were fully satisfied with precast shear walls’ non-coupling and group-coupling strength, where each individual or grouped shear fence was designed to possess 1.5S y for the seismic design.
        4,000원
        5.
        2024.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study presents code-compliant seismic details by addressing dry mechanical splices for precast concrete (PC) beam-column connections in the ACI 318-19 code. To this end, critical observations of previous test results on precast beam-column connection specimens with the proposed seismic detail are briefly reported in this study, along with a typical reinforced concrete (RC) monolithic connection. On this basis, nonlinear dynamic models were developed to verify seismic responses of the PC emulative moment-resisting frame systems. As the current design code allows only the emulative design approach, this study aims at identifying the seismic performances of PC moment frame systems depending on their emulative levels, for which two extreme cases were intentionally chosen as the non-emulative (unbonded self-centering with marginal energy dissipation) and fully-emulative connection details. Their corresponding hysteresis models were set by using commercial finite element analysis software. According to the current seismic design provisions, a typical five-story building was designed as a target PC building. Subsequently, nonlinear dynamic time history analyses were performed with seven ground motions to investigate the impact of emulation level or hysteresis models (i.e., energy dissipation performance) on system responses between the emulative and non-emulative PC moment frames. The analytical results showed that both the base shear and story drift ratio were substantially reduced in the emulative system compared to that of the non-emulative one, and it indicates the importance of the code-compliant (i.e., emulative) connection details on the seismic performance of the precast building.
        4,000원
        7.
        2023.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        For fast-built and safe precast concrete (PC) construction, the dry mechanical splicing method is a critical technique that enables a self-sustaining system (SSS) during construction with no temporary support and minimizes onsite jobs. However, due to limited experimental evidence, traditional wet splicing methods are still dominantly adopted in the domestic precast industry. For PC beam-column connections, the current design code requires achieving emulative connection performances and corresponding structural integrity to be comparable with typical reinforced concrete (RC) systems with monolithic connections. To this end, this study conducted the standard material tests on mechanical splices to check their satisfactory performance as the Type 2 mechanical splice specified in the ACI 318 code. Two PC beam-column connection specimens with dry mechanical splices and an RC control specimen as the special moment frame were subsequently fabricated and tested under lateral reversed cyclic loadings. Test results showed that the seismic performances of all the PC specimens were fully comparable to the RC specimen in terms of strength, stiffness, energy dissipation, drift capacity, and failure mode, and their hysteresis responses showed a mitigated pinching effect compared to the control RC specimen. The seismic performances of the PC and RC specimens were evaluated quantitatively based on the ACI 374 report, and it appeared that all the test specimens fully satisfied the seismic performance criteria as a code-compliant special moment frame system.
        4,000원
        8.
        2023.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        프리캐스트 코핑의 중공부 주철근 단절로 인한 단점을 보완하고, 거치대 삽입 없이 주철근을 거치대로 활용할 수 있 도록 철근-콘크리트 접촉부의 응력집중을 완화할 수 있는 하중분산세트의 성능을 검토하였다. 유한요소해석 및 축소모형실험을 통해 검토한 결과 하중분산세트는 철근-콘크리트 접촉부의 응력집중을 효과적으로 완화시켜 거치 시 콘크리트 파손을 방지할 수 있을 것으로 판단된다.
        4,000원
        9.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A two-hour fire-resistance PC hollow slab for residential use was developed to secure structural and fire-resistance performance and to be applied to the general building and apartment housing markets. Compared to the existing hollow slab, in order to secure the same or better structural performance and economic feasibility by reducing the quantity, it was attempted to secure the fire resistance performance by reducing the concrete filling rate in the cross section and adjusting the thickness of the upper and lower flanges by optimizing the hollow shape in the cross section of the slab. For structural performance evaluation, experiments were performed on PC hollow slabs by varying the member thickness and the presence or absence of overlaid concrete, and all of the experimental results showed that the design strength was sufficiently exhibited and that stability during construction was possible. The developed synthetic PC hollow slab has secured fire resistance and residential performance so that it can be applied to all buildings, and it is intended to be immediately applied to the field.
        4,000원
        10.
        2023.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study presents a dry precast concrete (PC) beam-column connection, and its target seismic performance level is set to be emulative to the reinforced concrete (RC) intermediate moment resisting frame system specified in ACI 318 and ASCE 7. The key features include self-sustaining ability during construction with the dry mechanical splicing method, enabling emulative connection performances and better constructability. Test specimens with code-compliant seismic details were fabricated and tested under reversed cyclic loading, which included a PC beam-column connection specimen with dry connections and an RC control specimen. The test results showed that all the specimens failed in a similar failure mode due to plastic deformations in beam members, while the hysteretic response curve of the PC specimen showed comparable and emulative performances compared to the RC specimen. Seismic performance evaluation was quantitatively addressed, and on this basis, it confirmed that the presented system can fully satisfy all the required performance for the intermediate RC moment resisting frame.
        4,000원
        11.
        2023.01 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A new clamped mechanical splice system was proposed to develop structural performance and constructability for precast concrete connections. The proposed mechanical splice resists external loading immediately after the engagement. The mechanical splices applicable for both large-scale rebars for plants and small-scale rebars for buildings were developed with the same design concept. Quasi-static lateral cyclic loading tests were conducted with reinforced and precast concrete members to verify the seismic performance. Also, shaking table tests with three types of seismic wave excitation, 1) random wave with white noise, 2) the 2016 Gyeongju earthquake, and 3) the 1999 Chi-Chi earthquake, were conducted to confirm the dynamic performance. All tests were performed with real-scale concrete specimens. Sensors measured the lateral load, acceleration, displacement, crack pattern, and secant system stiffness, and energy dissipation was determined by lateral load-displacement relation. As a result, the precast specimen provided the emulative performance with RC. In the shaking table tests, PC frames’ maximum acceleration and displacement response were amplified 1.57 - 2.85 and 2.20 - 2.92 times compared to the ground motions. The precast specimens utilizing clamped mechanical splice showed ductile behavior with energy dissipation capacity against strong motion earthquakes.
        4,200원
        12.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The paper introduces an experimental program for the newly developed vertical joints between Precast Concrete (PC) walls to improve their in-plane shear capacity. Compared to the existing vertical joints, two types of vertical joints were developed by increasing the transverse reinforcement ratio and improving frictional force at the joint interface. A total of four specimens including the Reinforced Concrete (RC) wall and PC walls with developed vertical joints were designed and constructed. The constructed specimens were experimentally investigated through monotonic shear tests. The observed damage, load-deformation relationship, strain and strength are investigated and compared with the cases of RC wall specimen. Experimental results indicate that the maximum force and initial stiffness of the PC wall with proposed vertical joints were decreased by comparing with those of RC wall. However, the ultimate displacement increased by up to 217.30% compared to the RC wall specimen. In addition, brittle failure did not occurred and relatively few cracks and damages occurred.
        4,000원
        19.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        최근 현장작업을 최소화할 수 있는 PC(Precast Concrete) 건축공법의 적용이 급속하게 활성화되고 있다. 그러나 PC 공법은 시공 중, 특히 부재간 일체화 이전에 구조적 성능을 발휘하기 어렵고 완공 후에도 접합부의 일체성을 확보하기 어려워 연쇄붕괴에 취약하다. PC 건축물에서는 다양한 PC 부재간 접합 상세가 존재하며, 국내외 구조/시공 상세가 현격히 다르다. 그러나 국내 PC 시스템의 시스템 과 상세 특성을 반영한 연쇄붕괴에 대한 연구는 매우 미비하다. 따라서, 본 연구에서는 국내에서 주로 사용하는 PC 구조시스템과 접 합부 구조/시공 상세를 조사 분석하였다. 이를 기반으로 국내에서 사용되는 전형적인 PC 시스템의 유형을 설정하고 상기 PC 시스템 의 연쇄붕괴방지성능을 평가하기 위하여 비선형 유한요소해석을 수행하였다. 해석결과를 바탕으로 국내에서 주로 사용된 PC 구조시 스템의 연쇄붕괴방지 성능을 평가하고 구조설계시 고려사항을 제안하였다.
        4,000원
        1 2 3 4 5