검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 18

        1.
        2022.06 구독 인증기관 무료, 개인회원 유료
        Lysophosphatidic acid (LPA) is a bioactive lipid messenger involved in the pathogenesis of chronic inflammation and various diseases. Recent studies have shown an association between periodontitis and neuroinflammatory diseases such as Alzheimer’s disease, stroke, and multiple sclerosis. However, the mechanistic relationship between periodontitis and neuroinflammatory diseases remains unclear. The current study found that lysophosphatidic acid receptors 1 (LPAR1) and 6 (LPAR6) exhibited increased expression in primary microglia and astrocytes. The primary astrocytes were then treated using medium conditioned to mimic periodontitis through addition of Porphyromonas gingivalis lipopolysaccharides, and an increased nitric oxide (NO) production was observed. Application of conditioned medium from human periodontal ligament stem cells with or without LPAR1 knockdown showed a decrease in the production of NO and expression of inducible nitric oxide synthase and interleukin 1 beta. These findings may contribute to our understanding of the mechanistic link between periodontitis and neuroinflammatory diseases.
        4,000원
        2.
        2020.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Fish ovarian germline stem cells (OGSCs) that have the abilities to self-renew and differentiate into functional gametes can be used in various researches and applications. A main issue to be solved for effective utilization of fish OGSCs is the development of their stable in vitro culture condition, but only few researches about fish OGSC culture have been reported so far. In this study, in order to find the clues to develop the culture condition for OGSCs from Japanese medaka (Oryzias latipes), we tried to establish somatic cell lines as a candidate for the feeder cells and evaluated its supporting effects on the culture of ovarian cell populations from O. latipes. As the results, the somatic cell lines could be established only from the embryonic tissues among three tissues derived from embryos, fins and ovaries. Three embryonic cell lines were tested as a feeder cell for the culture of ovarian cell population and all three cell lines induced cell aggregation formation of the cultured ovarian cells whereas the feeder-free condition did not. Furthermore, a significant cellular proliferation was observed in the ovarian cells cultured on two of three cell lines. As a trial to increase the capacity of the cell lines as a feeder cell that supports the proliferation of the cultured ovarian cells, we subsequently established a stable line that expresses the foreign O. latipes fibroblast growth factor 2 (FGF2) from an embryonic cell line and evaluated its effectiveness as a feeder cell. The ovarian cells cultured on FGF2 expressing feeder cells still formed cell aggregates but did not show a significant increase in cellular proliferation compared to those cultured on non-transformed feeder cells. The results from this study will provide the fundamental information for in vitro culture of medaka OGSCs.
        4,000원
        3.
        2017.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Mesenchymal stem cells (MSCs) have been considered an alternative source of neuronal lineage cells, which are difficult to isolate from brain and expand in vitro. Previous studies have reported that MSCs expressing Nestin (Nestin+ MSCs), a neuronal stem/progenitor cell marker, exhibit increased transcriptional levels of neural development-related genes, indicating that Nestin+ MSCs may exert potential with neurogenic differentiation. Accordingly, we investigated the effects of the presence of Nestin+ MSCs in bone-marrow-derived primary cells (BMPCs) on enhanced neurogenic differentiation of BMPCs by identifying the presence of Nestin+ MSCs in uncultured and cultured BMPCs. The percentage of Nestin+ MSCs in BMPCs was measured per passage by double staining with Nestin and CD90, an MSC marker. The efficiency of neurogenic differentiation was compared among passages, revealing the highest and lowest yields of Nestin+ MSCs. The presence of Nestin+ MSCs was identified in BMPCs before in vitro culture, and the highest and lowest percentages of Nestin+ MSCs in BMPCs was observed at the third (P3) and fifth passages (P5). Moreover, significantly the higher efficiency of differentiation into neurons, oligodendrocyte precursor cells and astrocytes was detected in BMPCs at P3, compared with P5. In conclusion, these results demonstrate that neurogenic differentiation can be enhanced by increasing the proportion of Nestin+ MSCs in cultured BMPCs.
        4,000원
        4.
        2016.10 구독 인증기관·개인회원 무료
        A meningioma is the second most common primary intracranial tumor of the central nervous system. One critical obstacle in meningioma research and preclinical development of novel therapeutic agents is a relative lack of suitable preclinical in vitro and in vivo model systems. In the current study, we assessed the proliferative characteristics of patient derived five primary meningioma cancer cell lines (WHO grade I and II) from brain tumor lesions. All of the meningioma cell lines showed homogenous expression of meningioma marker, VIMENTIN. The GTG-banding analysis determined the existence of different patterns of chromosomal abnormalities in representative cancer cell lines. The almost of the meningioma cell lines showed homogeneously spindle shaped cells, except for M160425 which have two prominent cell morphologies, spindle and round. Population-doubling (PD) was measured for every passage. The M160425 cell line had significantly longer PD time (39.8 ± 0.9 h, P<0.05) than the other meningioma cell lines. Consistent with the PD time, we confirmed that mRNA expression of Ki67, the conventional proliferation marker, was significantly lower in M160425 cell line compared to the other cell lines. The correlation between the PD time and the abundance of Ki67 in the meningioma derived cell lines was negative, indicating higher Ki67 abundance and a shorter PD time. The patient derived meningioma cancer cell lines established in this study might contribute to understanding cancer biology and help the success in the clinic by explaining the slightly different clinical behavior among the patients.
        5.
        2014.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A cell line of bovine origin was immortalized to isolate foot-and-mouth disease virus (FMDV). The immortalization was performed by infection of bovine primary epithelial cells with a recombinant retrovirus that overexpressed the human telomerase (hTERT), after primary culture of fetal bovine kidney tissue and removal of fibroblasts. After cloning the immor- talized cell line into single cells, the cloned cell lines were named JNUBK-1, JNUBK-2, JNUBK-3 and JNUBK-4, according to their characteristics. To confirm the epithelial phenotype of the cell lines JNUBK-3 and JNUBK-4, which showed stable proliferation capability over 35 generations after immortalization, the expression of cytokeratin and fibronectin was measured. Finally, the FMDV titer in the JNUBK-3 and JNUBK-4 cell lines was measured and was 800∼2,000 times higher than that of the currently used cell line IRBS-2. In conclusion, more sensitive isolation and production of FMDV became possible through the use of the immortalized JNUBK-3 and JNUBK-4 cell lines.
        4,200원
        6.
        2013.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Spermatogonial stem cells (SSCs) developed into sperms through spermatogenesis have been utilized as a useful tool in the field of regenerative medicine and infertility. However, a small number of highly qualified SSCs are resided in the seminiferous tubule of testis, resulted in developing effective in-vitro culture system of SSCs for solving simultaneously quantitative and qualitative problems. Presently, SSCs can be enriched on testicular stromal cells (TSCs), but there are no systematic researches about TSC culture. Therefore, we tried to optimize culture condition of TSCs derived from mouse with different strains. For these, proliferation and viability were measured and compared by culturing ICR outbred or DBA/2 inbred mouse-derived TSCs at 35 or 37℃. In case of ICR strain, primary TSCs cultured at 37℃ showed significantly higher proliferation and viability than those at 35℃ and significant increase of proliferation and viability in sub-passaged TSCs was detected in the 35℃ culture condition. Moreover, sub-passage of primary TSCs at 35℃ induced no significant effects on proliferation and viability. In contrast, in case of DBA/2 strain, significantly improved proliferation were detected in the primary TSCs cultured at 35℃, which showed no significant difference in the viability, compared to those at 37℃. Furthermore, sub-passaged TSCs cultured at 37℃ showed no significant differences in proliferation and viability, compared to those at 35℃. However, with significant decrease of proliferation induced by sub-passage of primary TSCs at 35℃, no significant effects on proliferation and viability were resulted from sub-passage of primary TSCs at 37℃. From these results, culture temperature of primary TSCs derived from outbred and inbred strain of mouse could be separately optimized in primary culture and subculture.
        4,000원
        7.
        2012.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Osteoarthritis is one of the commonest causes associated with age-related damage of articular cartilage. Non-steroidal anti-inflammatory drugs are commonly used in osteoarthritic patient. However, long term administration of these drugs results gastrointestinal disorders. Though, most studies have demonstrated in the past that bee venom has therapeutic effect on diseases related to inflammation and pains, but its anti-inflammatory properties have not been so far studied on inflamed chondrocytes (LPS induced) invitro. For the purpose, the study was carried out to determine the effect of bee venom on porcine articular chondrocyte cell using microarray. In this study, we found that 2,235 significantly associated gene (1,404 up-regulated genes and 831 down-regulated genes) that were expressed on inflamed and non inflamed chondrocytes during proliferation. Among the 1,404 up-regulated genes and 831 down-regulated genes, known genes were 372 and 237, respectively. On the other hand, bee venom significantly reduced expression of fetuin involved in acute inflammatory reaction. Our results suggest that this study could be useful database in gene expression profiling of chondrocyte cell treated with bee venom.
        4,000원
        8.
        2011.03 구독 인증기관 무료, 개인회원 유료
        Heat shock protein 90 (Hsp90) is ATPase-directed molecular chaperon and affects survival of cancer cell. Inhibitory effect of Hsp90 by inducing cell cycle arrest and apoptosis in the cancer cell was reported. However, its role during oocyte maturation and early embryo development is very insufficient. In this study, we traced the effects of Hsp90 inhibitor, 17-allylamino-17-demethoxygeldanamycin (17-AAG), on meiotic maturation and early embryonic development in pigs. We also investigated several indicators of developmental potential, including structural integrity, gene expression (Hsp90-, cell cycle-, and apoptosis-related genes), and apoptosis, which are affected by 17-AAG. Then, we examined the roles of Hsp90 inhibitor on viability of primary cells in pigs. Porcine oocytes were cultured in the NCSU-23 medium with or without 17-AAG for 44 h. The proportion of GV arrested oocytes was significantly different between the 17-AAG treated and untreated group (78.2 vs 34.8%, p<0.05). After completion of meiotic maturation, the proportion of MII oocytes was lower in the 17-AAG treated group than in the control group (27.9 vs 71.0%, p<0.05). After IVF, the percentage of penetrated oocytes was significantly lower in the 17-AAG treated group (25.2%), resulting in lower normal pronucleus formation (2PN of 14.6%). Therefore, the inhibition of meiotic progression by Hsp90 inhibitor played a critical role in fertilization status. Porcine embryo were cultured in the PZM-3 medium with or without 17-AAG for 6 days. In result, significant differences in developmental potential were detected between the embryos that were cultured with or without 17-AAG. Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) showed that the number of containing fragmented DNA at the blastocyst stage increased in the 17-AAG treated group compared with control (7.5 vs 4.4, respectively). Blastocysts that developed in the 17-AAG treated group had low structural integrity and high apoptotic nuclei than those of the untreated control, resulting in decrease the embryonic qualities of preimplantation porcine blastocysts. The mRNA expressions of cell cycle-related genes were down-regulated in the 17-AAG treated group compared with control. Also, the expression of the pro-apoptotic gene Bax increased in 17-AAG treated group, whereas expression of the anti-apoptotic gene Bcl-XL decreased. However, the expression of ER stress-related genes did not changed by 17-AAG. Cultured pESF cells were treated with or without 17-AAG and used for MTT assay. The results showed that viability of pESF cells were decreased by treatment of 17-AAG (2 μM) for 24 hr. These results indicated that 17-AAG decreased cell proliferation and increased cell death. Expression patterns Hsp90 complex genes (Hsp70 and p23), cell cycle-related genes (cdc2 and cdc25c) and apoptosis-related genes (Bax and Bcl-XL) were significantly changed by using RT-PCR analysis. The spliced form of pXbp-1 product (pXbp-1s) was detected in the tunicamycin (TM) treated cells, but it is not detected in 17-AAG treated cells. In conclusion, Hsp90 appears to play a direct role in porcine early embryo developmental competence including structural integrity of blastocysts. Also, these results indicate that Hsp90 is closely associated with cell cycle- and apoptosis-related genes expression in developing porcine embryos.
        4,500원
        9.
        2009.09 구독 인증기관 무료, 개인회원 유료
        Pluripotent embryonic stem (ES) cells isolated from inner cell mass (ICM) of blastocyst-stage embryos are capable of differentiating into various cell lineages and demonstrate germ-line transmission in experimentally produced chimeras. These cells have a great potential as tools for transgenic animal production, screening of newly-developed drugs, and cell therapy. Miniature pigs, selectively bred pigs for small size, offer several advantages over large breed pigs in biomedical research including human disease model and xenotransplantation. In the present study, factors affecting primary culture of somatic cell nuclear transfer blastocysts from miniature pigs for isolation of ES cells were investigated. Formation of primary colonies occurred only on STO cells in human ES medium. In contrast, no ICM outgrowth was observed on mouse embryonic fibroblasts (MEF) in porcine ES medium. Plating intact blastocysts and isolated ICM resulted in comparable attachment on feeder layer and primary colony formation. After subculture of ES-like colonies, two putative ES cell lines were isolated. Colonies of putative ES cells morphologically resembled murine ES cells. These cells were maintained in culture up to three passages, but lost by spontaneous differentiation. The present study demonstrates factors involved in the early stage of nuclear transfer ES cell isolation in miniature pigs. However, long-term maintenance and characterization of nuclear transfer ES cells in miniature pigs are remained to be done in further studies.
        4,000원
        10.
        2007.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Chromosomal abnormality s uch as aneuploidy is one of the main factors to cause cancers This abnormality is caused by defects in centrosomal duplication‘ and most cancer cells have extra copies of centrosomes, r esulting in t he formation of multipolar spindles. Several kinases playing in mitotic phase have been implicated in regulating the centrosomal cycle‘ spindle checkpoint‘ and chromosome co ndensation and segregation. They also have Lhe ability to act as oncogenes. FOl studying the relationship between rnitotic kinase and oral cancers, the kinase activity of polo-like kinase-1, which is one of mitosis-specific kinases, is analyzed in oral carcinoma cells originated differently. Kinase activity was increased in these cancer cells compared to normal human gingival fibroblast primary cultured cells Moreover. the mitotic cell populations were a lso increased in these cell lines. Whereas the inhibition of Polo-like kinase-1 by C-terrninal domain in human gingival fibroblast cells induced multiploidy‘ the apoptotic cell population was increased in oral cancer cells overexpressed C-terminal domain 0 1' Polo- Ii ke kinase-1. These data suggested that polo-like kinase-1 might be involved in the on cogenic effect in oral cancer like other solid human carcinomas, and be target molecules for anti-cancer drug.
        4,000원
        11.
        2007.03 구독 인증기관 무료, 개인회원 유료
        The stem cell research is emerging as a cutting edge topic for a new treatment for many chronic diseases. Recently, dental stem cell would be possible for regeneration of tooth itself as well as periodontal tissue. However, the study of the cell characterization is scarce. Therefore, we performed the genetic profiling and the characterization of mouse fetus/neonate derived dental tissue and cell to find the identification during dental development. We separated dental arch from mandibles of 14.5 d fetal mice and neonate 0 d under the stereoscope, and isolated dental cells primarily from the tissues. Then, we examined morphology and the gene expression profiles of the primary cells and dental tissues from fetus/neonate and adult with RT-PCR. Primary dental cells showed heterogeneous but the majority was shown as fibroblast-like morphology. The change of population doubling time levels (PDLs) showed that the primary dental cells have growth potential and could be expanded under our culture conditions without reduction of growth rate. Immunocytochemical and flow cytometric analyses were performed to characterize the primary dental cell populations from both of fetus (E14.5) and neonate. Alpha smooth muscle actin (α-SMA), vimentin, and von Willebrand factor showed strong expression, but desmin positive cells were not detected in the primary dental cells. Most of the markers were not uniformly expressed, but found in subsets of cells, indicating that the primary dental cell population is heterogeneous, and characteristics of the populations were changed during culture period. And mesenchymal stem cell markers were highly expressed. Gene expression profile showed Wnt family and its related signaling molecules, growth factors, transcription factors and tooth specific molecules were expressed both fetal and neonatal tissue. The tooth specific genes (enamelin, amelogenin, and DSPP) only expressed in neonate and adult stage. These expression patterns appeared same as primary fetal and neonatal cells. In this study we isolated primary cells from whole mandible of fetal and neonatal mice. And we investigated the characteristics of the primary cells and the profile of gene expressions, which are involved in epithelial-mesenchymal interactions during tooth development. Taken together, the primary dental cells in early passages or fetal and neonatal mandibles could be useful stem cell resources.
        4,000원
        16.
        1996.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        It is study was designed to characterize endotoxin-induced prostaglandin production in primary cultured rat vascular smooth muscle cells (VSMC). The time course for prostag)andim synthesis in lipopolysaccharide (LPS)-stimulated VSMC showed that the maximum production was reached in 12 hours. LPS induced prostaglandin H2 synthase (PGHS) activity in VSMC and the time course profile in the changes of PGHS activity paralleled that of total prostaglandin production. Differential treatment showed that 4 hours' exposure to LPS was enough for the maximum effect on the prostaglandin production and this effect was completely inhibited by the co-treatment of actinomycin D, a transcription inhibitor. These results suggest that LPS effect might be determined within 4 hours. Actinomycin D increased PGHS activity without affecting prostaglandin production if added 4 hours after LPS treatment. On the other hand, cycloheximide, a translation inhibitor, augmented LPS-induced prostaglandin production if treated during first four hours, but it inhibited LPS-induced PGHS activity regardless of treatment schedule. These results suggeat the existence of multiple regulating mechanisms in the LPS-induced prostaglandin synthesis.
        4,000원
        17.
        2007.09 KCI 등재 서비스 종료(열람 제한)
        본 연구는 자궁근종 성장에 관한 분자생물학적인 기전의 이해를 위해 자궁근종 및 정상 자궁근세포의 초기 배양방법을 확립하기 위해 실시하였다. 이를 위해 최종적으로 두 가지 세포 배양 방법이 확립되었다. 그리고 안정적으로 연구(특히, 여성호르몬에 대한 반응 연구)에 사용할 수 있는 가장 적합한 세포 배양 방법이 모색되었다. 두 가지 세포 배양 조건 중 두 번째 방법(method 2)이 안정적으로 세포의 반응을 연구하는데 더 나은 방법으로 결론 내려졌고, 여