This paper presents a study on the design and implementation of a secure contactless system leveraging Quick Response (QR) codes as a core component. The main goal of this system is to bridge the gap between strong security and improved user experience within the realm of digital interaction. The system's versatility can be expanded with broad compatibility with a variety of applications. Utility can be expanded to areas such as contactless payments, electronic ticketing, secure identity verification, and convenient access to medical records. The international standardization of QR codes ensures seamless cross-platform compatibility, strengthening their role in the digital ecosystem. We actually create and develop a non-contact security QR code system and check the expandability of the system. This study highlights the pivotal role of QR codes within the realm of secure contactless systems. Through its effective balance of digital security and user convenience, QR codes are emerging as an important element in the continued development of a secure and user-friendly digital environment. The potential for future research lies in exploring more complex use cases and further advancements that improve both security and user-centered design.
The role of QR Code robots in smart logistics is great. Cognitive robots, such as logistics robots, were mostly used to adjust routes and search for peripheral sensors, cameras, and recognition signs attached to walls. However, recently, the ease of making QR Codes and the convenience of producing and attaching a lot of information within QR Codes have been raised, and many of these reasons have made QR Codes recognizable as visions and others. In addition, there have been cases in developed countries and Korea that control several of these robots at the same time and operate logistics factories smartly. This representative case is the KIVA robot in Amazon. KIVA robots are only operated inside Amazon, but information about them is not exposed to the outside world, so a variety of similar robots are developed and operated in several places around the world. They are applied in various fields such as education, medical, silver, military, parking, construction, marine, and agriculture, creating a variety of application robots. In this work, we are developing a robot that can recognize its current position, move and control in the directed direction through two-dimensional QR Codes with the same horizontal and vertical sides, and the error is to create a QR Code robot with accuracy to reach within 3mm. This paper focuses on indoor mobile robot position recognition and driving experiment using QR Code during the development of QR Code-aware indoor mobility robots.
In order to improve the implementation of safety and health education at the site for industrial accident prevention activities, research was conducted to minimize inconvenience and increase utilization by redesigning and developing existing education methods. To date, occupational safety and health education has been conducted without considering the general work characteristics and functional facilities (mechanical, electrical, instrumentation, chemical) of workers (mechanical: turbine, valve, pump, hydraulic system, electrical: generator, breaker, motor, etc.). In particular, plant facilities were classified as mechanical and electrical facilities to improve the methodology for industrial safety and health education for plant maintenance workers. In addition, the “One Page Education Plan” was announced as a learning case because the spread of COVID-19 infectious diseases made it impossible to reduce or control the number of people in all groups and groups. The improvement of this training method will play a major role in improving the effectiveness of safety education in power plant workplaces.
The role of QR Code robots in smart logistics is great. Cognitive robots, such as logistics robots, were mostly used to adjust routes and search for peripheral sensors, cameras, and recognition signs attached to walls. However, recently, the ease of making QR Codes and the convenience of producing and attaching a lot of information within QR Codes have been raised, and many of these reasons have made QR Codes recognizable as visions and others. In addition, there have been cases in developed countries and Korea that control several of these robots at the same time and operate logistics factories smartly. This representative case is the KIVA robot in Amazon. KIVA robots are only operated inside Amazon, but information about them is not exposed to the outside world, so a variety of similar robots are developed and operated in several places around the world. They are applied in various fields such as education, medical, silver, military, parking, construction, marine, and agriculture, creating a variety of application robots. In this work, we are developing a robot that can recognize its current position, move and control in the directed direction through two-dimensional QR Codes with the same horizontal and vertical sides, and the error is to create a QR Code robot with accuracy to reach within 3mm. This paper focuses on the driving control of indoor mobile robot during the development of QR Code-aware indoor mobility robots.
The role of QR Code robots in smart logistics is great. Cognitive robots, such as logistics robots, were mostly used to adjust routes and search for peripheral sensors, cameras, and recognition signs attached to walls. However, recently, the ease of making QR Codes and the convenience of producing and attaching a lot of information within QR Codes have been raised, and many of these reasons have made QR Codes recognizable as visions and others. In addition, there have been cases in developed countries and Korea that control several of these robots at the same time and operate logistics factories smartly. In this work, we are developing a robot that can recognize its current position, move and control in the directed direction through two-dimensional QR Codes with the same horizontal and vertical sides, and the error is to create a QR Code robot with accuracy to reach within 3mm. This paper focuses on experimental environments for testbeds during the development of QR Code-aware indoor mobility robots.
The role of QR Code robots in smart logistics is great. Cognitive robots, such as logistics robots, were mostly used to adjust routes and search for peripheral sensors, cameras, and recognition signs attached to walls. However, recently, the ease of making QR Codes and the convenience of producing and attaching a lot of information within QR Codes have been raised, and many of these reasons have made QR Codes recognizable as visions and others. In addition, there have been cases in developed countries and Korea that control several of these robots at the same time and operate logistics factories smartly. This representative case is the KIVA robot in Amazon. KIVA robots are only operated inside Amazon, but information about them is not exposed to the outside world, so a variety of similar robots are developed and operated in several places around the world. They are applied in various fields such as education, medical, silver, military, parking, construction, marine, and agriculture, creating a variety of application robots. In this work, we are developing a robot that can recognize its current position, move and control in the directed direction through two-dimensional QR Codes with the same horizontal and vertical sides, and the error is to create a QR Code robot with accuracy to reach within 3mm. This paper focuses a study on the application of QR Code position recognition during the development of QR Code-aware indoor mobility robots.
The role of QR Code robots in smart logistics is great. Cognitive robots, such as logistics robots, were mostly used to adjust routes and search for peripheral sensors, cameras, and recognition signs attached to walls. However, recently, the ease of making QR Codes and the convenience of producing and attaching a lot of information within QR Codes have been raised, and many of these reasons have made QR Codes recognizable as visions and others. In addition, there have been cases in developed countries and Korea that control several of these robots at the same time and operate logistics factories smartly. This representative case is the KIVA robot in Amazon. KIVA robots are only operated inside Amazon, but information about them is not exposed to the outside world, so a variety of similar robots are developed and operated in several places around the world. They are applied in various fields such as education, medical, silver, military, parking, construction, marine, and agriculture, creating a variety of application robots. In this work, we are developing a robot that can recognize its current position, move and control in the directed direction through two-dimensional QR Codes with the same horizontal and vertical sides, and the error is to create a QR Code robot with accuracy to reach within 3mm. This paper focuses a study on the application of QR Code recognition system during the development of QR Code-aware indoor mobility robots.
The role of QR Code robots in smart logistics is great. Cognitive robots, such as logistics robots, were mostly used to adjust routes and search for peripheral sensors, cameras, and recognition signs attached to walls. However, recently, the ease of making QR Codes and the convenience of producing and attaching a lot of information within QR Codes have been raised, and many of these reasons have made QR Codes recognizable as visions and others. In addition, there have been cases in developed countries and Korea that control several of these robots at the same time and operate logistics factories smartly. This representative case is the KIVA robot in Amazon. KIVA robots are only operated inside Amazon, but information about them is not exposed to the outside world, so a variety of similar robots are developed and operated in several places around the world. They are applied in various fields such as education, medical, silver, military, parking, construction, marine, and agriculture, creating a variety of application robots. In this work, we are developing a robot that can recognize its current position, move and control in the directed direction through two-dimensional QR Codes with the same horizontal and vertical sides, and the error is to create a QR Code robot with accuracy to reach within 3mm. This paper focuses a study on the speculative navigation using auxiliary encoder during the development of QR Code-aware indoor mobility robots.
The role of QR Code robots in smart logistics is great. Cognitive robots, such as logistics robots, were mostly used to adjust routes and search for peripheral sensors, cameras, and recognition signs attached to walls. However, recently, the ease of making QR Codes and the convenience of producing and attaching a lot of information within QR Codes have been raised, and many of these reasons have made QR Codes recognizable as visions and others. In addition, there have been cases in developed countries and Korea that control several of these robots at the same time and operate logistics factories smartly. This representative case is the KIVA robot in Amazon. KIVA robots are only operated inside Amazon, but information about them is not exposed to the outside world, so a variety of similar robots are developed and operated in several places around the world. They are applied in various fields such as education, medical, silver, military, parking, construction, marine, and agriculture, creating a variety of application robots. In this work, we are developing a robot that can recognize its current position, move and control in the directed direction through two-dimensional QR codes with the same horizontal and vertical sides, and the error is to create a QR Code robot with accuracy to reach within 3mm. This paper focuses on the QR Code recognition mobile robotics study during the development of QR Code-aware indoor mobility robots.
The role of QR Code robots in smart logistics is great. Cognitive robots, such as logistics robots, were mostly used to adjust routes and search for peripheral sensors, cameras, and recognition signs attached to walls. However, recently, the ease of making QR Codes and the convenience of producing and attaching a lot of information within QR Codes have been raised, and many of these reasons have made QR Codes recognizable as visions and others. In addition, there have been cases in developed countries and Korea that control several of these robots at the same time and operate logistics factories smartly. This representative case is the KIVA robot in Amazon. KIVA robots are only operated inside Amazon, but information about them is not exposed to the outside world, so a variety of similar robots are developed and operated in several places around the world. They are applied in various fields such as education, medical, silver, military, parking, construction, marine, and agriculture, creating a variety of application robots. In this work, we are developing a robot that can recognize its current position, move and control in the directed direction through two-dimensional QR Codes with the same horizontal and vertical sides, and the error is to create a QR Code robot with accuracy to reach within 3mm. This paper focuses a study on the position recognition control using QR Code during the development of QR Code-aware indoor mobility robots.
The role of QR Code robots in smart logistics is great. Cognitive robots, such as logistics robots, were mostly used to adjust routes and search for peripheral sensors, cameras, and recognition signs attached to walls. However, recently, the ease of making QR Codes and the convenience of producing and attaching a lot of information within QR Codes have been raised, and many of these reasons have made QR Codes recognizable as visions and others. In addition, there have been cases in developed countries and Korea that control several of these robots at the same time and operate logistics factories smartly. This representative case is the KIVA robot in Amazon. KIVA robots are only operated inside Amazon, but information about them is not exposed to the outside world, so a variety of similar robots are developed and operated in several places around the world. They are applied in various fields such as education, medical, silver, military, parking, construction, marine, and agriculture, creating a variety of application robots. In this work, we are developing a robot that can recognize its current position, move and control in the directed direction through two-dimensional QR Codes with the same horizontal and vertical sides, and the error is to create a QR Code robot with accuracy to reach within 3mm. This paper focuses a suggestion of control method in QR Code-aware indoor mobility robots.
The role of QR code robots in smart logistics is great. Cognitive robots, such as logistics robots, were mostly used to adjust routes and search for peripheral sensors, cameras, and recognition signs attached to walls. However, recently, the ease of making QR codes and the convenience of producing and attaching a lot of information within QR codes have been raised, and many of these reasons have made QR codes recognizable as visions and others. In addition, there have been cases in developed countries and Korea that control several of these robots at the same time and operate logistics factories smartly. This representative case is the KIVA robot in Amazon. KIVA robots are only operated inside Amazon, but information about them is not exposed to the outside world, so a variety of similar robots are developed and operated in several places around the world. They are applied in various fields such as education, medical, silver, military, parking, construction, marine, and agriculture, creating a variety of application robots. In this work, we are developing a robot that can recognize its current position, move and control in the directed direction through two-dimensional QR codes with the same horizontal and vertical sides, and the error is to create a QR code robot with accuracy to reach within 3mm. This paper focuses on the driving operation techniques during the development of QR code-aware indoor mobility robots.
The role of QR code robots in smart logistics is great. Cognitive robots, such as logistics robots, were mostly used to adjust routes and search for peripheral sensors, cameras, and recognition signs attached to walls. However, recently, the ease of making QR codes and the convenience of producing and attaching a lot of information within QR codes have been raised, and many of these reasons have made QR codes recognizable as visions and others. In addition, there have been cases in developed countries and Korea that control several of these robots at the same time and operate logistics factories smartly. This representative case is the KIVA robot in Amazon. KIVA robots are only operated inside Amazon, but information about them is not exposed to the outside world, so a variety of similar robots are developed and operated in several places around the world. They are applied in various fields such as education, medical, silver, military, parking, construction, marine, and agriculture, creating a variety of application robots. In this work, we are developing a robot that can recognize its current position, move and control in the directed direction through two-dimensional QR codes with the same horizontal and vertical sides, and the error is to create a QR code robot with accuracy to reach within 3mm. This paper focuses on the moving control model during the development of QR code-aware indoor mobility robots.
본 연구는 패션제품에 QR코드를 부착하여 소재와 세탁 등의 전문적 정보의 제공뿐 아니라 기업과 소비자, 소비자와 소비자를 연결하는 기능을 부여할 수 있도록 하기 위한 기초연구로 QR코드 적용 시 요구되는 정보에 대한 소비자의 인식과 선호를 조사하였다. 타 연령대보다 스마트폰 보급률이 높고 1인 가구의 비율이 높아 비대면 정보교환의 필요성이 높을 것으로 생각되는 20대를 대상으로 설문하였다. 현행 라벨을 통한 의류제품의 정보제공 방법에 대해서 개선의 필요성이 확인되었으며 특히 불충분한 정보제공, 전문적인 용어 사용, 세탁 기호의 불확실함이 불만족의 요인이었다. 따라서 다양한 방식으로 많은 정보를 전달할 수 있는 QR코드는 패션제품의 관리 정보제공의 효율적인 대안이 될 수 있을 것이다. 또한 응답자들은 아웃도어, 패딩, 정장 등의 고관여 의류 상품과 신체에 닿는 언더웨어류에 대해서 자세한 세탁방법, 사용 및 보관 시 유의사항, 소재의 기능성에 대한 정보를 얻고 싶어 했으며 캐주얼웨어, 코트에 대해서는 제품을 활용한 SNS 데일리룩, 제품과 어울리는 다른 상품, 비슷한 아이템의 추천 등 스타일링이나 의복 구매 정보를 제공받고 싶어했다. 따라서 QR코드를 이와 같은 다양한 정보 제공을 위한 웹사이트 또는 SNS의 연결수단 으로 사용한다면 소비자들의 정보추구 욕구의 충족과 함께 현명한 제품 사용을 도울 수 있을 것이며 초 연결시대 패션제품의 새로운 역할을 부여하는 대안이 될 수 있을 것이다.
Quick Response (QR) code has often been employed in promotional coupon campaigns worldwide. This research addresses whether and how curiosity, visual complexity and perceived fit jointly affect consumers’ intention to scan such a code. Based on relevant theories from marketing and psychology, we posit that, while consumers with the high level of curiosity are likely to be more bound to visual complexity, consumers with the low level of curiosity tend to rely more on a good perceived fit, thus overcome the negative effects of visual complexity, forming greater scan intention. To this end, we conduct an experimental study with general consumer sample. The findings support our main prediction. In closing, we discuss theoretical and managerial implications while recognizing important limitations and suggesting future research directions.
Recognize the QR code and develops the position and orientation of the robot can recognize the robot. It is expected to become the innovative technology of robotic navigation systems and logistics systems. The existing vision of the position recognition method(Vision) or artificial surface(Artificial Landmark)based positioning of pushing the location recognition promoted to use a commercially available wireless signal. When commercially available through these technology are expected to be able to make the logistics robot capable of precise position recognition excellent in cost and performance. In the case of the Amazon by Kiva Systems of automation and robotics technology and logistics system in the same way that suggests supplied to the consumer in the short term it innovates in the current logistics. This same technology is location-aware robot control system of the Amazon and is expected to be an innovative logistics system to transfer after development is complete.