검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 12

        3.
        2022.10 구독 인증기관·개인회원 무료
        The number of dismantled nuclear facilities is increasing globally. Dismantling of nuclear facilities generates large amount of waste such as concrete, soil, and metal. Concrete waste accounts for 70% of the total amount of waste. Since hundreds of thousansds of tons of concrete waste generated, securing technology of reduction and recycling of waste is emerging as a very important issue. The objective of this study is to synthesize geopolymer using inorganic materials from cement fine powder in concrete waste. Dismantled concrete waste contains a large amount of calcium silicate hydrate(C-S-H), Ca(OH)2, SiO2, etc., which is an inorganic material required for the synthesis of geopolymer. SiO2 affects the compressive strength of the geopolymer and Ca(OH)2 affects the curing rate. A high concentration of alkali solution is used as an alkali activator, and alkali activator is necessary for the polymerzation reaction of metakaolinite. The experiment consists of three steps. The first step is to react with concrete waste and hydrochloric acid to extract ions. In the solid after filtration, SiO2 and Al2O3 are composed of 84.10%. It can be used instead of commercial SiO2 required for the synthesis of geopolymer. The second step is to add NaOH up to pH 10, impurities can be removed to extract Ca(OH)2 with high purity. The final step is to add NaOH up to pH 13, and Ca(OH)2 extraction. The alkali solution generated after the last reaction can be recycled into an alkali activator during the synthesis of the geopolymer. If dismantled concrete waste is recycled during geopolymer synthesized, the volume reduction rate of dismantled concrete waste is more than 50%. If you put the radioactive waste in the recycled solidification materials synthesis from concrete waste by dismantling of nuclear facilities, it is possible to reduce the amount of waste generated and disposal costs.
        6.
        2018.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        2017년 고리 1 호기 영구정지를 계기로 국내 원자력발전소의 해체가 점차 가시화되고 있다. 앞으로 원전 해체가 본격적으로 추진될 경우 원전 1기 당 약 16만 t의 콘크리트 폐기물이 발생될 것으로 예측되었으며, 이들 콘크리트 폐기물은 대부분 오염 준위가 매우 낮아 자체처분 대상으로 고려될 수 있다. 따라서, 국내 자체처분 폐기물(원자력안전위원회 고시 2017-65호에 따른 자체처분 허용농도 또는 자체처분 허용선량을 만족하는 폐기물)에 대한 현행 규제체계가 대량의 콘크리트 폐기물에 대한 무제한적 자체처분에 대해서도 유효성을 유지할 수 있는지를 사전에 확인할 필요가 있다. 이와 관련, 국내 자체처분 규정 개발 시 참조기준인 IAEA SRS No. 44를 심층분석하고, 국내 산업계 현황을 반영한 입력값과 계산식을 이용하여 4가지 자체 처분 시나리오에 대한 예상 피폭방사선량을 평가하였다. 그 결과, 재활용 시나리오에 대한 예상선량은 대부분 정상 시나리오에 대한 자체처분 선량 기준(즉, 0.01 mSv·y-1)보다 낮은 것으로 평가되었으나, 성토 후 거주 시나리오의 경우 보수적인 가정을 적용하면 자체처분 선량 기준을 초과할 가능성도 배제할 수 없는 것으로 나타났다. 따라서, 대량의 해체 콘크리트 폐기물의 안전하고 지속가능한 자체처분을 위해서는 폐기물 처리업체 다변화, 성토 시나리오에 대한 보다 구체적인 평가, 성토를 통한 자체처분에 대한 부분적 제한조건 설정 등을 고려할 수 있다.
        4,600원
        7.
        2016.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 액-액 반응에 의한 액상탄산화법을 이용하여 탄산칼슘을 제조하였다. MEA를 사용하여 습식화학수법의 셔틀메카니즘을 도입하였다. MEA 30% 수용액에 고농도 이산화탄소(A)와 배 기가스(B)를 사용하여 이산화탄소를 포집하였으며, 액상탄산화과정을 통해 슬러지 mg 당 0.35 mg의 이 산화탄소를 고정하였다. 최종생성물의 SEM 분석결과 탄산칼슘의 구조는 calcite가 혼합되어 있으나 대 부분 구형 vaterite가 생성되었다.
        4,000원
        8.
        2013.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, a liquid carbonation method was applied for producing precipitate calcium carbonate by liquid-liquid reaction. We recycled the recycling water of ready-mixed concrete, one of construction waste for use source of carbonate ion. A supernatant separated from the recycling water of ready-mixed concrete, as a result of ICP analysis of a cation, Ca²+ was contained up to 1100 ppm. We used MEA as a CO₂ absorbent for the liquid carbonation. A precipitate CaCO₃ was produced at more than MEA 20 wt%. The precipitate CaCO₃ as a final product was separated and dried. The result of XRD was confirmed the generation of CaCO₃ to calcite structure.
        4,000원
        10.
        2013.10 서비스 종료(열람 제한)
        This research was performed to evaluate applicability of cold-mix recycling asphalt concrete, which was modified during recycling process. A maximum size of 25mm reclaimed asphalt pavement(RAP) was used in cold-recycle process together with an asphalt emulsion and recycled inorganic binder as a binder.
        11.
        2007.03 KCI 등재 서비스 종료(열람 제한)
        Currently, portable equipment for recycling of waste asphalt concrete (ASCON) has been used. However, any air pollution control devices are not attached in the simple portable one. Thus, a lot of air pollutants have been produced from recycling processes of waste ASCON which resulted from aging of paved roads or repavement of roads. This study deals with a preliminary result of concentration analysis of air pollutants obtained from a pilot and a real recycling processes of waste ASCON using simple portable recycling equipment. Air pollutants were taken from 4 steps of the pilot recycling process including an initial heating by liquid petroleum gas (LPG), intermediate heating and melting (H&M) process, final H&M process, and pavement processes using recycled ASCON at the recycling site. Also, air pollutants were taken front 4 steps of the real recycling processes including an initial H&M, final H&M and mixing, loading of recycled ASCON to dump trucks, and at the recycling site after leaving the loaded dump trucks for real pavement sites. The air pollutants measured in this study include volatile organic compounds (VOCs), aldehydes, particulate matter (PM: PM1, PM2.5, PM7, PM10, TSP (total suspended particulate)). The identified concentrations of VOCs increased with increasing time or degree for H&M of waste ASCON. In particular, very high concentrations of the VOCs at the status of complete melting, which is exposed to the air, of the waste ASCON just before paving tv the recycled ASCON at the recycling site. Also, considerable amount of VOCs were identified from the recycling equipment after the dump trucks leaded by recycled ASCON leaved the recycling site for the pavement sites. The relative level of formaldehyde exceeded 80% of the aldehydes Identified in the recycling processes. This is because the waste ASCON is exposed to direct flame of LPG during H&M processes. The PM concentrations measured in the winter recycling processes, such as the loading and rotation processes of waste ASCON into/in the recycling equipment for H&M, were much higher than those in the summer ones. In particular, the concentrations of coarse particles such as PM7 and PM10 during the winter recycling were very high as compared those during the summer one.
        12.
        1999.04 KCI 등재 서비스 종료(열람 제한)
        This study was conducted to investigate the removal characteristics of PO4 3- -P contained in livestock wastewater using waste concrete. With small particle size, increased dosage and temperature of water, PO4 3- -P was well removed by waste concrete. PO4 3- -P was removed by adsorption reaction in low pH of the primary phase, but the crystallization reaction predominated for increasing pH with passed time. As a result of adapting the adsorption isotherm equation, PO4 3- -P removal was more affected by the crystallization reaction than the adsorption reaction. In the SEM micrograph, there was no evident change on the waste concrete surface. Particle size was plate-phase before reaction but appeared a dense form to progress in the crystallization reaction after reaction.