검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 31

        21.
        2016.09 KCI 등재 서비스 종료(열람 제한)
        This study aimed to evaluate changes in the TN and TP removal efficiencies, depending on whether or not a settling process is applied, in a sequencing batch reactor (SBR) process with a membrane bioreactor (MBR). Nutrient removal was considered in terms of developing an advanced water treatment system for ships in accordance with water quality standards set forth by 227(64). For these purposes, the TN and TP concentrations in the inflow and outflow water were measured to calculate the TN and TP removal efficiencies, depending on whether or not a settling process was used. Water discharged from a bathroom, which was constructed for the experiment, was used as the raw water. The experiment that included a settling process was conducted twice, and the operating conditions were: aeration for 90 min, settling for 30 min, agitation for 15 min, and settling for 15 min for one experiment; and aeration for 150 min, settling for 45 min, agitation for 15 min, and settling for 15 min in the other. Operating conditions for the experiment that did not include a settling process were: aeration for 180 min and agitation for 60 min. The concentration of the mixed liquor suspended solids (MLSS) in the reactor was 3,500 mg/L, while the aeration rate was 121 L/min and the water production rate was 1.5 L/min. For the two experiments where a settling process was applied, the average TN removal efficiencies were 44.39% and 41.05%, and the average TP removal efficiencies were 47.85% and 46.04%. For the experiment in which a settling process was not applied, the average TN removal efficiency was 65.51%, and the average TP removal efficiency was 52.51%. Although the final nutrient levels did not satisfy the water quality standards of MEPC 227(64), the TN and TP removal efficiencies were higher when a settling process was not applied.
        22.
        2016.04 서비스 종료(열람 제한)
        Comprehensive evaluation by the old sewage treatment plant residual value, investments are needed, such as adequacy of established objective criteria, such as after maintenance or abolition of sustainable operations. In this study, we propose a comprehensive evaluation items of evaluating structural measures to determine whether the abolition of the old sewage treatment plant.
        23.
        2014.07 KCI 등재 서비스 종료(열람 제한)
        본 연구의 핵심은 다양한 환경기초시설, 치수관련 시설물 등의 지자체별 개별적 건설과 운영에 따른 예산의 낭비와 비효율적 운영을 지양하는데 있다. 다음으로는 인접 지자체간의 협력적 운영을 통하여, 저출산 고령화 시대에 맞는 수자원시설의 효율성을 강화하여 규모의 경제를 달성하는 방안을 찾는데 있다. 지자체간의 협력을 유도하기 위해서는 관련시설의 투자비용의 합리적 배분이 필요하다. 이러한 합리적 비용배분의 방법으로 비례법, 샤플리방법, 분리비용잔여편익 산출법 등을 제안하고 있다. 지자체별로 건설 중인 하수처리장시설을 사례대상으로 하여 구체적인 적용방법을 제시하고 있다. 본 연구결과의 정책적인 시사점으로는 합리적 비용배분을 통하여 관련 지자체간의 갈등을 사전에 차단하는 동시에, 정부의 환경기초시설에 대한 지자체별 국고보조 방식보다는 유역의 협력적 예산으로 전환하는 것도 바람직한 정책으로 판단된다.
        24.
        2013.10 KCI 등재 서비스 종료(열람 제한)
        The objectives of this paper are the characterization of the pretreatment of wastewater by microfiltration (MF) membranes for river maintenance and water recycling. This is done by investigation of the proper coagulation conditions, such as the types and doses of coagulants, mixing conditions (velocity gradients and mixing periods), pH, etc., using jar tests. The effluent water from a pore control fiber (PCF) filter located after the secondary clarifier at Kang-byeon Sewage Treatment Plant (K-STP) was used in these experiments. Two established coagulants, aluminum sulfate (Alum) and poly aluminum chloride (PAC), which are commonly used in sewage treatment plants to treat drinking water, were used in this research. The results indicate that the optimal coagulation velocity gradients (G) and agitation period (T) for both Alum and PAC were 200-250 s-1 and 5 min respectively, but the coagulation efficiencies for both Alum and PAC were lower at low values of G and T. For a 60 min filtration period on the MF, the flux efficiencies (J/J0 (%)) at the K-STP effluent that were coagulated by PAC and Alum were 92.9 % and 79.9 %, respectively, under the same coagulation conditions. It is concluded that an enhanced membrane process is possible by effective filtration of effluent at the K-STP using the coagulation-membrane separation process.
        25.
        2010.03 KCI 등재 서비스 종료(열람 제한)
        To acquire preliminary data for the control of total nitrogen (TN) in S sewage treatment plant, which processes merging food waste and sewage, the effect of reject water on the total nitrogen in the effluent was examined in this study. Water quality data for the plant during the winter period were applied to calculate the mass balance. It was calculated that at least more than 231 kg/d TN should be removed to control the TN concentration in the effluent. Assuming 18 ppm as the goal TN concentration in the effluent, about 941 kg/d TN should be removed from this plant. Approximately 10% more TN should be removed than at present to achieve this result. It was observed that dewatering the filtrate had a considerably greater effect on the total nitrogen in the effluent than the reject waters. The dewatered filtrate contained 1,399kg/d TN. The contribution of the dewatered filtrate to the TN concentration in the effluent was 0.183, which was 7 to 23 times greater than the other reject waters. In addition, the amount of total nitrogen from the reject water, with the exception of the dewatering filtrate, was lower than the amount of TN that should be removed from S sewage treatment plant. Therefore, it was concluded that one of the most effective methods for controlling the TN concentration in effluent was the removal of the TN contained in the dewatering filtrate.
        26.
        2009.06 KCI 등재 서비스 종료(열람 제한)
        Activated sludge sewage treatment processes are difficult to be controlled because of their complex and nonlinear behaviour, however, the control of the dissolved oxygen level in the reactors plays an important role in the operation of the facility. For this reason, this study is designed to present a system which accurately measures DO, MLSS, pH and ORP in the aeration tank to alleviate situations above and provide the automatization of a sewage treatment plant (STP) using new DO control system. The automatic control systems must be guaranteed the accuracy. Therefore, the proposed automatic DO control system in this study could be commercial applications in the aeration tanks by means of operating cost analysis and user-friendly for operation and maintenance. We could get accurate data from the lab tank which has water quality checker because there was no vortex and air bubble during the measurement process. Improvement of confidence in the lab tank enabled effective and automatic operation of sewage treatment plants so that operation costs and manpower could be saved. If this result is put in place in every sewage treatment plant nationwide for practical purposes, it is estimated to cost 18.5 million dollars in installing the lab tank and to save 9.8 million dollars in management cost a year, except for cost saved by automation.
        27.
        2008.07 KCI 등재 서비스 종료(열람 제한)
        Using high voltage electric fields induced by high voltage AC (10-12 kV/cm, 20 kHz) and pulsed (20-30 kV/cm, 40 Hz) electric field generator as a semipermanent and environment-friendly disinfecting apparatus, the disinfection effect of coliform group in the effluent of sewage plant was investigated. The effects of electric field strength, treatment time, discharge area of a discharge tube, water quality factors (electric conductivity, pH and SS) on its death rate were examined. The death rate of coliform group was increased with increasing electric field strength and treatment time. For AC and pulsed electric field generator, the critical electric field strength was 6 kV/cm and 2 kV/cm, respectively, and the critical treatment time was 5 min and 2 min, respectively, regardless of electric field strength. Comparing the death rate of coliform group by AC and pulsed electric fields used in this study, its death rate was higher for the latter than the former, but did not increase linearly with increasing electric field strength. The results obtained for the effects of discharge area, electric conductivity, pH and SS on the death rate of coliform group using AC electric field (12 kV/cm, 20 kHz) were as follows: its death rate showed the trend to increase linearly with increasing discharge area; for the effect of electric conductivity, its death rate was increased with increasing electric conductivity, regardless of ionic species, increased with increasing cationic valency, but was similar between the same cationic valency; the pH 5~9 used in this study did not affect its death rate; its death rate was decreased with increasing SS concentration.
        28.
        2007.11 KCI 등재 서비스 종료(열람 제한)
        The removal of nitrogen compounds from a wastewater is essential and it is often accomplished by biological process. An aerobic nitrate-removing bacterium was isolated from a municipal sewage treatment plant and soil. On the basis of its morphological, cultural and physiological characteristics and 16S rRNA sequencing data, this strain was identified as Pseudomonas fluorescens, and named as P. fluorescens K4. The optimal conditions of the initial pH and temperature of media for its growth were 7.0~8.0 and 30℃, respectively. P. fluorescens K4 was able to remove 99.9% of nitrate after 24 h in a culture. The strain could grow with a nitrate concentration up to 800 mg/l and was able to remove 99.9% of nitrate after 104 h of incubation. The optimal electron donor was sodium citrate for a nitrate removal. The strain K4 showed a capability of a complete nitrate removal when the initial C/N ratio was 1.0. An effect of the initial seed concentration was observed for a cell of 10% (v/v) for a nitrate removal. Especially P. fluorescens K4 could completely remove 200 mg/l ammonium for 3 days.
        29.
        2005.08 KCI 등재 서비스 종료(열람 제한)
        For the sustainable management of marine ecosystem in Masan Bay, we have to assess the carrying capacity and standard of target water quality. In this research, we assume that all pollutants loads are treated in Dukdong sewage treatment plant, then we simulate the physical-biological model for prediction water quality for the achievement of standard water quality. In 2001 year, for the achievement of COD 2.5 mg/L, we need to reduce COD 90 %, nitrogen 30 %, phosphate 90% than that of the present value. According to these results, the water quality of sewage treatment plant is required to treat COD 13.5 mg/L, nitrogen 33.3 mg/L, phosphate 6.0 mg/L. If the sewage treatment plant will be expanded much larger in 2011, it will need to be treated in COD 6.6 mg/L, nitrogen 2.5 mg/L, phosphate 5 mg/L for the achievement of water quality standard in COD 2.5 mg/L.
        30.
        2002.06 KCI 등재 서비스 종료(열람 제한)
        This study aimed to obtain the relative formula with the unit treatment cost according to the treatment of a sewage plant in the service area under highway. The following results were obtained. The correlative formula connected to amount of sewage(Q)generation was as follows ; between an annual amount of sale(C) showed Q=19.113·C0.9294, and between the number of users(P) showed Q=2×10-8·P2 - 0.0298·P + 75,666. The correlative formula connected to the treatment cost was as follows ; according to the amount of sewage generation showed S= 3×10-6·Q - 0.2266·Q + 29,895, according to the elimination of BOD(E) showed S= 6×10-5·E2 - 0.6717·E + 27,744, accoding to the annual amount of sale showed S=0.0005·C2 - 4.8013·C + 35,118, with the number of persons(P) using the service area showed S= 2×10-8·P2 - 0.046·P + 48,803.
        31.
        1999.02 KCI 등재 서비스 종료(열람 제한)
        수영하수처리장 방류수의 해중방류법과 3차 처리 시설 설치의 비용분석을 한 결과는 다음과 같다. 1) 해안에서 4km 거리와 관경을 2m의 해중방류법을 이용한 수용만의 수질을 개선시키는데 소요되는 해중방류관 건설비용은 383억 원이 소요되는 것으로 산출되었다. 2) 수영하수처리장의 유출수를 해중방류관을 통해서 방류할 경우 방류수심을 32m, Diffuser의 길이를 200m로 할 경우의 초기희석배율은 유속에 따라서 56.4∼399.2으로 계산되었다. 3) 질소를 제거하기 위한 순환법의 경우의 20년 동안의 총 비용은 1,364억 원, 인을 제거하기 위한 응집제 첨가 활성슬러지법은 1,010억 원, 해중방류법은 383억 원으로 해중방류법이 3차 처리시설을 설치하는 비용보다 약 2.6∼3.5배 비용을 적게 소요하는 것으로 산출되었다. 4) 해중방류법을 이용할 경우의 수영만의 수질영향을 예측하기 위해서 물질순환모델을 이용하여 예측한 결과 수영만의 수질이 COD, 용존무기질소(DIN)와 용존무기인(DIP)의 전 항목에서 해역환경 II등급을 만족하는 것으로 예측되었다.
        1 2