검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 25

        1.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 1500℃ 이상의 극한 열 환경에서 사용되는 소재인 SiC (silicon carbide) 섬유를 복합방적사로 제조 한 후에 원단을 제직하고 제직된 원단의 역학적 특성을 KES-FB system으로 측정하고 측정된 역학적 특성 값으로부 터 착용성능을 분석하여 방화복으로의 활용 가능성을 알아보았다. 그 결과 직물의 역학적 특성에서는 인장선형성 (LT)과 인장레질리언스(RT), 전단강성(G)을 나타내는 값이 원사의 제조형태에 따라서 그 특성 값의 차이를 보였으 며, 직물의 두께와 평량, 밀도 값이 전단히스테리시스(2HG)와 압축레질리언스(RC) 값에 영향을 준다는 것을 알 수있었다. 의복착용 성능에서는 착용 시 부피감을 나타내는 두께에 대한 압축에너지의 비(WC/T) 값에서 SiC 복합방적 사로 제조된 직물의 값이 가장 우수한 값을 타나내었으며, 방염성능에서는 SiC 복합방적사로 제조된 직물이 탄화길 이와 잔염시간에서 KFI 성능기준을 만족하여 방화복으로서의 활용이 가능함을 확인할 수 있었다.
        4,000원
        5.
        2018.11 구독 인증기관·개인회원 무료
        본 실험에서는 대청호에서 발생한 남조류를 대상으로 SiC(Silicon carbide) 평막의 최적 운전조건을 도출하고자 하였다. 이를 위해 원수 농도에 따른 투과플럭스, 응집제 주입 조건, Air scrubbing 조건, 역세척(Backwashing) 유량 및 시간, 여과 및 역세척 시간, 응집제 종류 및 주입 농도 등에 대해 안정적으로 운전이 가능한 최적 조건을 도출하였다. 특히, 저농도의 응집제 주입에도 음전하를 띄는 조류 입자들과 전기적으로 중화를 일으켜서 생성된 미세 플럭들이 SiC 평막의 막표면에서 투수성을 증가시킨 것으로 사료된다. 이를 통해 도출된 설계인자로 제작한 Pilot Plant를 조류 제거시 적용하고자 한다. 본 연구는 환경부의 “환경정책기반공공기술개발사업”으로 지원받은 과제입니다.
        7.
        2018.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Molybdenum silicide has gained interest for high temperature structural applications. However, poor fracture toughness at room temperatures and low creep resistance at elevated temperatures have hindered its practical applications. This study uses a novel powder metallurgical approach applied to uniformly mixed molybdenum silicidebased composites with silicon carbide. The degree of powder mixing with different ball milling time is also demonstrated by Voronoi diagrams. Core-shell composite powder with Mo nanoparticles as the shell and β-SiC as the core is prepared via chemical vapor transport. Using this prepared core-shell composite powder, the molybdenum silicide-based composites with uniformly dispersed β-SiC are fabricated using pressureless sintering. The relative density of the specimens sintered at 1500oC for 10 h is 97.1%, which is similar to pressure sintering owing to improved sinterability using Mo nanoparticles.
        4,000원
        8.
        2018.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        To overcome the low mechanical strength and corrosion behavior of a carbon steel canister at high temperature condition of a deep borehole, SiC ceramics were studied as an alternative material for the disposal canister. In this paper, a design concept for a SiC canister, along with an outer stainless steel container, was proposed, and its manufacturing feasibility was tested by fabricating several 1/3 scale canisters. The proposed canister can contain one PWR assembly. The outer container was also prepared for the string formation of SiC canisters. Thermal conductivity was measured for the SiC canister. The canister had a good thermal conductivity of above 70 W·m-1·K-1 at 100℃. The structural stability was checked under KURT environment, and it was found that the SiC ceramics did not exhibit any change for the 3 year corrosion test at 70℃. Therefore, it was concluded that SiC ceramics could be a good alternative to carbon steel in application to deep borehole disposal canisters.
        4,000원
        10.
        2017.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Reaction-bonded silicon carbide (RBSC) is a SiC-based composite ceramic fabricated by the infiltration of molten silicon into a skeleton of SiC particles and carbon, in order to manufacture a ceramic body with full density. RBSC has been widely used and studied for many years in the SiC field, because of its relatively low processing temperature for fabrication, easy use in forming components with a near-net shape, and high density, compared with other sintering methods for SiC. A radiant tube is one of the most commonly employed ceramics components when using RBSC materials in industrial fields. In this study, the mechanical strengths of commercial RBSC tubes with different sizes are evaluated using 3-point flexural and C-ring tests. The size scaling law is applied to the obtained mechanical strength values for specimens with different sizes. The discrepancy between the flexural and C-ring strengths is also discussed.
        4,000원
        11.
        2017.11 구독 인증기관·개인회원 무료
        탄화규소(Silicon Carbide, SiC) 세라믹 멤브레인은 알루미나 원료의 세라믹 멤브레인보다 높은 친수성을 나타내어 동일한 압력 하에 높은 수투과도 유지가 가 능하다. 이러한 탄화규소 세라믹 멤브레인을 혐기성 생물막 반응조(Anaerobic Membrane Bioreactor, AnMBR)에 설치하여 고농도의 생물반응조 운전에도 불구하고 낮고 안정된 운전압력을 유지할 수 있었으며, 막오염 현상의 획기적인 저감이 가능하였다. 본 연구에서는 도시하수와 음폐수를 혼합 처리함에 있어서 탄화규소 세라믹 멤브레인을 적용한 AnMBR의 운전결과를 알루미나 세라믹 멤브레인을 적용한 경우와 비교 평가하였다.
        12.
        2017.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In order to improve the high temperature oxidation resistance and lifespan of mat type porous carbon insulation, SiC was coated on carbon insulation by solution coating using polycarbosilane solution, curing in an oxidizing atmosphere at 200 oC, and pyrolysis at temperatures up to 1200 oC. The SiOC phase formed during the pyrolysis process was converted into SiC crystals as the heat treatment temperature increased, and a SiC coating with a thickness of 10-15 nm was formed at 1600 oC. The SiC coated specimen showed a weight reduction of 8.6 % when it was kept in an atmospheric environment of 700 oC for 1 hour. On the other hand, the thermal conductivity was 0.17W/mK, and no difference between states before and after coating was observed at all.
        4,000원
        13.
        2016.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Tri-isotropic (TRISO) coatings on zirconia surrogate beads are deposited using a fluidized-bed vapor deposition (FB-CVD) method. The silicon carbide layer is particularly important among the coated layers because it acts as a miniature pressure vessel and a diffusion barrier to gaseous and metallic fission products in the TRISO-coated particles. In this study, we obtain a nearly stoichiometric composition in the SiC layer coated at 1400oC, 1500oC, and 1400oC with 20 vol.% methyltrichlorosilane (MTS), However, the composition of the SiC layer coated at 1300-1350oC shows a difference from the stoichiometric ratio (1:1). The density decreases remarkably with decreasing SiC deposition temperature because of the nanosized pores. The high density of the SiC layer (≥ 3.19 g/cm2) easily obtained at 1500oC and 1400oC with 20 vol.% MTS did not change at an annealing temperature of 1900°C, simulating the reactor operating temperature. The evaluation of the mechanical properties is limited because of the inaccurate values of hardness and Young’s modulus measured by the nano-indentation method.
        4,000원
        14.
        2016.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Waste SiC powders obtained from silicon wafer sludge have very low density and a narrow particle size distribution of 10-20 μm. A scarce yield of C and Si is expected when SiC powders are incorporated into the Fe melt without briquetting. Here, the briquetting variables of the SiC powders are studied as a function of the sintering temperature, pressure, and type and contents of the binders to improve the yield. It is experimentally confirmed that Si and C from the sintered briquette can be incorporated effectively into the Fe melt when the waste SiC powders milled for 30 min with 20 wt.% Fe binder are sintered at 1100oC upon compaction using a pressure of 250 MPa. XRF-WDS analysis shows that an yield of about 90% is obtained when the SiC briquette is kept in the Fe melt at 1650oC for more than 1 h.
        4,000원
        15.
        2015.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        For research and development of Silicon Carbide (SiC) mirrors, the Korea Astronomy and Space Science Institute (KASI) and National Optical Astronomy Observatory (NOAO) have agreed to cooperate and share on polishing and measuring facilities, experience and human resources for two years (2014-2015). The main goals of the SiC mirror polishing are to achieve optical surface figures of less than 20 nm rms and optical surface roughness of less than 2 nm rms. In addition, Green Optics Co., Ltd (GO) has been interested in the SiC polishing and joined the partnership with KASI. KASI will be involved in the development of the SiC polishing and the optical surface measurement using three di erent kinds of SiC materials and manufacturing processes (POCOTM, CoorsTekTM and SSGTM corporations) provided by NOAO. GO will polish the SiC substrate within requirements. Additionally, the requirements of the optical surface imperfections are given as: less than 40 um scratch and 500 um dig. In this paper, we introduce the international collaboration and interim results for SiC mirror polishing and development.
        3,000원
        16.
        2014.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        RBSC (reaction-bonded silicon carbide) represents a family of composite ceramics processed by infiltrating with molten silicon into a skeleton of SiC particles and carbon in order to fabricate a fully dense body of silicon carbide. RBSC has been commercially used and widely studied for many years, because of its advantages, such as relatively low temperature for fabrication and easier to form components with near-net-shape and high relative density, compared with other sintering methods. In this study, RBSC was fabricated with different size of SiC in the raw material. Microstructure, thermal and mechanical properties were characterized with the reaction-sintered samples in order to examine the effect of SiC size on the thermal and mechanical properties of RBSC ceramics. Especially, phase volume fraction of each component phase, such as Si, SiC, and C, was evaluated by using an image analyzer. The relationship between microstructures and physical properties was also discussed.
        4,000원
        17.
        2014.07 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study highlights a novel method and mechanism for the rapid and effective milling of carbon fibers (CFs) in silicon carbide (SiC) powder, and also the dispersion of CFs in SiC powder. The composite powders were prepared by chopping and exfoliation of CFs, and ball milling of CFs and SiC powder in isopropyl alcohol. A wide range of CFs loading, from 10 to 50 vol%, was studied. The milling of CFs and SiC powder was checked by measuring the average particle size of the composite powders. The dispersivity of CFs in SiC powder was checked through scanning electron microscope. The results show that the usage of exfoliated CF tows resulted in a rapid and effective milling of CFs and SiC powder. The results further show an excellent dispersion of CFs in SiC powder for all CFs loading without any dispersing agent.
        4,000원
        18.
        2007.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The application of Carbon and graphite based materials in unprotected environment is limited to a temperature of 450℃ or so because of their susceptibility to oxidation at this temperature and higher. To over come these obstacles a low cost chemical vapour reaction process (CVR) was developed to give crystalline and high purity SiC coating on graphite and isotropic C/C composite. CVR is most effective carbothermal reduction method for conversation of a few micron of carbon layer to SiC. In the CVR method, a sic conversation layer is formed by reaction between carbon and gaseous reagent silicon monoxide at high temperature. Characterization of SiC coating was carried out using SEM. The other properties studied were hardness density and conversion efficiency.
        3,000원
        19.
        2006.09 구독 인증기관·개인회원 무료
        Silicon nitride - silicon carbide composite was developed by using an abrasive SiC powders as a raw material. The composites were prepared by mixing abrasive SiC powder with silicon, pressing and sintering at under nitrogen atmosphere in atmosphere controlled vacuum furnace. The proportion of silicon in the initial mixtures varied from 20 to 50 wt%. After sintering, crystalline phases and microstructure were characterized. All composites consisted of and as the bonding phases in SiC matrix. Their physical and mechanical properties were also determined. It was found that the density of the obtained composites increased with an increase in the content formed in the reaction.
        1 2