내화 구조물에서는 환기 계수, 재료 탄성 계수, 항복 강도, 열팽창 계수, 외력 및 화재 위치에서 불확실성이 관찰된다. 환기 불확실성 은 화재 온도에 영향을 미치고, 이는 다시 구조물 온도에 영향을 미친다. 이러한 온도는 재료 특성과 함께 불확실한 구조적 응답으로 이어지고 있다. 화재 시 구조적 비선형 거동으로 인해 몬테카를로 시뮬레이션을 사용하여 화재 취약성을 계산하는데, 이는 시간이 많 이 소요된다. 따라서 머신러닝 알고리즘을 활용해 화재 취약성 분석을 예측함으로써 효율성을 높이고 정확성을 확보하려는 연구가 진행되고 있다. 이 연구에서는 화재 크기, 위치, 구조 재료 특성의 불확실성을 고려하여 철골 모멘트 골조 건물의 화재 취약성을 예측 했다. 화재 시 비선형 구조 거동 결과를 기반으로 한 취약성 곡선은 로그 정규 분포를 따른다. 마지막으로 제안한 방법이 화재 취약성 을 정확하고 효율적으로 예측할 수 있음을 보여주었다.
This paper is to investigate the retrofitting effect for a non-seismic reinforced concrete frame strengthened by perimeter steel moment frames with indirect integrity, which ameliorates the problems of the direct integrity method. To achieve this, first, full-scale tests were conducted to address the structural behavior of a two-story non-seismic reinforced concrete frame and a strengthened frame. The non-seismic frame showed a maximum strength of 185 kN because the flexural-shear failure at the bottom end of columns on the first floor was governed, and shear cracks were concentrated at the beam-column joints on the second floor. The strengthened frame possessed a maximum strength of 338 kN, which is more than 1.8 times that of the non-seismic specimen. A considerable decrease in the quantity of cracks for the strengthened frame was observed compared with the non-seismic frame, while there was the obvious appearance of the failure pattern due to the shear crack. The lateral-resisting capacity for the non-seismic bare frame and the strengthened frame may be determined per the specified shear strength of the reinforced columns in accordance with the distance to a critical section. The effective depth of the column may be referred to as the longitudinal length from the border between the column and the foundation. The lateral-resisting capacity for the non-seismic bare frame and the strengthened frame may be reasonably determined per the specified shear strength of the reinforced columns in accordance with the distance to a critical section. The effective depth of the column may be referred to as the longitudinal length from the border between the column and the foundation. The proposed method had an error of about 2.2% for the non-seismic details and about 4.4% for the strengthened frame based on the closed results versus the experimental results.
‘Seismic Performance Evaluation Method for Existing Buildings (2013)’ developed in accordance with the overseas guidelines ASCE 41 - 06 is the most widely used procedure among domestic seismic performance evaluation guidelines in Korea. However, unlike ASCE 41 - 06, it stipulates that the final performance should be derived as the gravity load distribution ratio of the lateral force resistance system in the guideline. Therefore, in the case of a dual steel structure system with slender braces, where the internal moment frame is mostly responsible for the gravity load, the evaluation of slender braces based on gravity load distribution ratio is difficult to be achieved. In this research, we propose an objective evaluation process for such system by evaluating seismic performance for large-scale factory facilities as an example.
In current seismic design code, steel moment frames are classified into ordinary, intermediate, and special moment frames. In the case of special moment frames which have large R-factor, economic design is possible by reducing the design lateral force. However, there is difficulty for practical application due to constraints such as strong column-weak beam requirement. This study evaluated if steel intermediate moment frame could maintain enough seismic capacity when the R-factor is increased from 4.5 to 6. As for the analytical models, steel moment frames of 3 and 5 stories were categorized into four performance groups according to seismic design category. Seismic performances of the frames were evaluated through the procedure based on FEMA P695. FEMA P695 utilizes nonlinear static analysis(pushover analysis) and nonlinear dynamic analysis(incremental dynamic analysis, IDA). In order to reflect the characteristics of Korean steel moment frames on the analytical model, the beam-column connection was modeled as weak panel zone where the collapse of panel zone was indirectly considered by checking its ultimate rotational angle after an analysis is done. The analysis result showed that the performance criteria required by FEMA P695 was satisfied when R-factor increased in all the soil conditions except SE.
최근 진행되고 있는 건축 프로젝트는 기존의 정형적인 구조계획에서 벗어나 점차 복합적이고 다양한 형태를 지향하고 있다. 이와 같은 새로운 건축 트렌드 속에서, 비정형 건축물의 구조 시스템을 효율적으로 현실화하여 골조의 직교성을 해체시키는 기술에 대한 연구의 필요성이 대두되고 있다. 비정형 건축물의 중요한 구조적 특징 중 하나로 경사기둥의 빈번한 적용을 들 수 있다. 경사기둥은 접합된 보에 추가적으로 모멘트와 축력을 전달하므로, 이러한 현상이 골조 및 보-기둥 접합부의 거동에 어떠한 영향을 미치는지를 실험 혹은 해석을 통해 검증할 필요가 있다. 그러나 수직기둥-보 접합부에 비하면 경사기둥-보 접합부에 대한 연구는 현재까지 충분한 연구가 이루어지지 않고 있는 실정이다. 따라서 본 연구에서는 비선형해석 및 유한요소해석을 사용하여 경사기둥을 포함한 보-기둥 접합부의 성능을 평가하였다. 경사기둥을 포함한 철골모멘트 골조의 비선형정적해석을 통하여 골조 전체의 거동을 분석하였고, 경사기둥-보 접합부 모델의 유한요소해석을 통해 좌굴거동 및 취성파단 잠재성을 검토하였다.
This study is the research appling the representative Displacement-Based Design which is the basic concept of Direct Displacement Based Design proposed by Chopra and Goel to original Reinforced Concrete moment frame and determining the thickness of retrofit Steel Jacket about the Maximum design ground acceleration, and developing the more improved Algorithm as well as program by the Retrofit Design method and Nonlinear analysis by the Performance design method before and after reinforcement appling the determined retrofit thickness. It also shows the result of the seismic performance improvement which is the ratio of seismic performance appreciation result yield displacement 19%, yield strength ratio 24%, displace ductility ratio the maximum 27% comparing Multi degree of freedom, column member of Reinforced Concrete with the performance improvement column member considering the thickness of the determined Steel Jacket. The developed Algorithm and program are easy to apply seismic design and application to the original Reinforced Concrete building, at the same time, it applicate to display well the design result of Target displacement performance level about nonlinear behavior.
현행 내진설계기준에서 RBS-B 접합부는 오직 중간모켄트골조(IMF) 시스템에서만 사용이 허용된다. 본 연구는 현행설계규준에 따라 설계한 RBS-B 접합부를 갖는 철골 모멘트골조 시스템의 내진성능평가를 수행하였다. 이를 위하여 층수(3층, 6층, 9층), 경간너비(6m, 9m), 내진설계범주(SDC C_{max}, SDC C_{min})으로 구성된 12개의 RBS-B접합부를 갖는 철골모멘트골조 건물을 설계하였고 RBS-B 접합부의 비선형 이력거동을 잘 모사하는 접합부 모델을 개발하였다. 설계된 대상골조는 ATC-63에 의해 개발된 내진성능평가방법에 따라 내진성능평가를 수행하였다. 또한 본 연구는 저자가 이전연구에서 제안한 새로운 설계법에 따라 설계된 IMF 시스템의 내진성능평가를 수행하였다. 그 결과 현행규준에 따라 설계한 몇 개의 대상골조가 적절한 붕괴여유비를 보유하지 못하였다. 반면에 새로운 설계절차에 따라 설계된 대상골조는 적절한 붕괴여유비를 보유하였다.
본 연구는 높은 지진의 위험이 내재된 지역에 위치한 3층, 9층 그리고 20층 철골 모멘트저항골조에 대한 반응수정계수와 주기의 영향을 평가하기 위한 것이다. 각 구조물들은 IBC 2000과 KBC 2005에서 제시하고 있는 8의 반응수정계수로 설계되었고 건물에 기대되는 최소의 성능과 최대의 성능을 평가하기 위해서 상한범위와 하한범위의 설계가 고려되었다. 또한 반응수정계수에 대한 영향을 조사하기 위하여 4개의 다른 반응수정계수들이(9, 10, 11, 12) 각 구조물에 대하여 적용되었고 각 구조물의 고유주기 값 외의 4개의 다른 주기를 추가로 적용하여 구조물의 동적거동시 주기에 대한 영향을 조사하였다. 총 150개의 해석모델들은 50년 동안 2%의 초과확률(재현 주기 2500년)을 가진 20개의 지반운동에 대하여 평가되었다. 구조물의 성능평가를 위하여 정적 Pushover와 비선형 시간이력해석이 수행되었으며 구조물의 연성능력을 평가하기 위해서 변위연성요구가 고려되었다. 3층과 9층 구조물은 변위연성요구 값이 비교적 안정적인 거동을 보인 반면 20층 구조물은 동적 불안정성을 야기하는 요소에 의해 민감하게 나타나는 것으로 조사되었다.
현행 내진설계에서 반응수정계수는 탄성 밑면전단력을 저감하여 설계하중 수준을 정의하기 위한 주요 계수로 사용되고 있다. 이제까지 반응수정계수는 공학자들의 경험적인 합의에 의하여 정성적으로 설계기준에 반영하고 있다. 구조시스템에서 반응수정계수와 접합부의 가용 회전능력은 매우 밀접한 관계가 있으며, 본 논문에서는 이러한 접합부의 회전능력과 비선형 푸쉬오버 해석에 기초하여 반응수정계수를 평가하는 방법을 제시하였다. 이를 검증하기 위하여 IBC 2000에 따라 설계된 R3S 골조를 대상으로 제안 방법을 적용하였다. 또한, 다양한 지진파에 대한 비선형 시간이력 해석을 병행하여 가용 회전능력에 의거하여 산정된 반응수정계수의 타당성을 평가한 결과, 본 제안방법에 따라 정의된 반응수정계수가 충분히 보수적임을 확인하였다.
본 연구는 연쇄붕괴 저항성능 평가 시 기둥의 순간적인 제거에 따른 동적효과가 반영된 에너지 기반 근사해석의 적용성을 확인하 기 위해 내진 설계된 철골모멘트골조의 예제구조물을 대상으로 분석하였으며, 이를 통해 구조 강건성을 산정하여 연쇄붕괴에 대한 민감도를 평가할 수 있는 방법을 제시하였다. 예제구조물에 대한 적용을 통해 비선형 정적해석 결과를 이용한 에너지 기반 근사해석과 직접동적해석에 대한 결과가 잘 일치하는 것을 검증하였으며, 다른 구조시스템을 가지는 건물의 연쇄붕괴에 대한 구조적 내력성능을 비교하기 위한 수단으로 구조물의 민감도를 평가하였다. 이는 비정상하중에 대하여 구조물이 연쇄붕괴에 저항할 수 있는 최대보유 잔류내력 성능인 구조 강건성을 이 용하였고, 본 연구에서 제시한 방법을 통해 연쇄붕괴 해석 및 설계에 편리하게 활용될 수 있음을 확인하였다.
최근 초고층 건물의 수가 증가하면서 건축 및 토목 구조물의 내진 및 내풍 설계의 중요성이 점차 강조되고 있다. 본 연구에서는 중력하중을 지지하는 대상 구조물에 대하여 지진하중 및 풍하중의 작용 전후를 비교하고 그 영향을 요구 강재량으로 평가 하였다. 본 연구에서는 서로 다른 높이를 갖는 다수의 철골 중간모멘트 골조를 대상으로 내진 및 내풍 설계를 수행하여 높이에 따른 영향을 평가 하였다. 본 연구를 진행함에 있어 평면의 형상은 SAC Project (Gupta and Krawinker, 1999)를 참고하였다. 3, 6, 9, 12, 15층 총 5가지 높이의 구조물에 대하여 해석을 진행하였으며 층고는 4m로 하였다. 사용한 지진하중은 등가정적해석법을 이용하여 정적 지진하중을 사용하였고 풍하중은 KBC2009에 따른 정적 풍하중을 사용하였다. 각각의 대상구조물의 강재량을 비교해본 결과, 구조물의 높이가 증가함에 따라 풍하중과 지진하중의 영향이 커지는 경향을 보이고, 풍하중 영향의 증가폭이 더 빠르게 커짐을 알 수 있다. 이는 높이가 높아질수록 지진하중에 대한 고려와 함께 풍하중에 의한 효과를 고려해야할 필요가 있음을 의미한다.
The conventional brace system is generally accepted lateral load resisting system for steel structures due to efficient story drift control and economic feasibility by frame materials decrease. But the lateral stiffness of the brace decreases following buckling in this system and buckling causes unstable structures with strength deterioration hysteresis performance. Buckling restrained brace system that performs stable behavior after yielding of core element prevented from buckling by tube element is better than conventional brace system in point of earthquake energy absorbing capacity. In this study, the seismic performance of the multi-story steel frames applied for brace and buckling restrained brace is respectively analyzed, so that, the damage of two systems is quantitatively evaluated by analyzing energy absorption capacity.
플로팅 함체의 강성변화가 상부 철골모멘트연성골조에 미치는 영향을 확인하기 위해 함체의 높이를 1.5m, 2.0m, 2.5m로 변화시키면서 파랑하중 3초에서 15초에 대하여 동적 유체 해석과 그에 따른 파력을 산정하고 정적 구조 해석을 수행하였다. 해석결과, RAO-피치와 상부 골조의 모멘트 증가량이 선형적인 관계이고 함체의 곡률이 구조물의 강성과 반비례함을 확인하였다. 이러한 선형적 결과를 종합하여, 임의의 함체에 대한 상부골조의 해석 결과를 이용하여 함체 높이가 다른 경우에도 상부 골조의 모멘트를 추정하는 절차를 제안하였으며, 추정결과가 해석결과와 상당히 잘 일치함을 확인하였다.