검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 8

        1.
        2022.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The effect of permanganate oxidation was investigated as water treatment strategy with a focus on comparing the reaction characteristics of NaOCl and sodium permanganate (NaMnO4) in algae (Monoraphidium sp., Micractinium inermum, Microcystis aeruginosa)-contained water. Flow cytometry explained that chlorine exposure easily damaged algae cells. Damaged algae cells release intracellular organic matter, which increases the concentration of organic matter in the water, which is higher than by NaMnO4. The oxidation reaction resulted in the release of toxin (microcystin-LR, MC-LR) in water, and the reaction of algal organic matter with NaOCl resulted in trihalomethanes (THMs) concentration increase. The oxidation results by NaMnO4 significantly improved the concentration reduction of THMs and MC-LR. Therefore, this study suggests that NaMnO4 is effective as a pre-oxidant for reducing algae damage and byproducts in water treatment process.
        4,300원
        2.
        2019.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study is focused on effects of factors that affect the formation of THMs during chlorination in drinking water treatment. During the chlorination, chlorine consumption is increased by increasing the initial chlorine dose, the pH and the total dissolved solid (TDS) concentration. Also THMs formation is increased up to 58.82 μg/L and 55.54 μg/L by increasing initial chlorine concentration and increasing pH. However, concentration of chloroform is decreased by increasing TDS concentration. This is caused the cation(Na+) of the total dissolved solids preferentially reacts with the functional groups of the organic material which influence the trihalomethane formation. But total trihalomethane formation is increased up to 127.46 μg/L by Br- contained in the total dissolved solids. DOC reduction was not influenced by any of the factors.
        4,000원
        3.
        2004.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        It has been confirmed that some Trihalomethanes (THMs) suspected as carcinogens, can be formed during chlorination for water supply through the reaction of chlorine and humic substances in water. The electrochemical characteristics on activated carbon fiber filter (ACF) electrode were investigated to remove the THMs in the chlorination process of drinking water. The electrochemical removal efficiency depended on the applied voltage and flow rate. In this study, the best result showed that the removal efficiency of THMs was higher than 99%.
        4,000원
        4.
        1995.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The raw drinking water quality is getting worse because of the winter drought and the conventional treatment system is'nt suitable to obtain the satisfied quality of water. So, the advanced water system, BAC(Biological Activated Carbon) process is said to be effective to remove dissolved organics and ammonia nitrogen. In our study, the BAC pilot plant using Nak-dong river water is tested in low temperature. Following results are found from the study. The ammonia nitrogen removal rate of BAC system using wood-based carbon (PICABIOL) was 99% in $6^{\circ}C$ temperature. Chlorine dosage in wood-based BAC effluent was reduced to 67% of that in sand filtered wate. It resulted from the removal of ammonia nitrogen. Also, THM formed by chlorine addition in wood-based BAC effluent was decreased to 65% of that in sand filtered water. In the case of dual-filter, the removal efficiency of ammonia nitrogen was increased 30% more than in conventional sand filter. According to this result, the ammonia nitrogen load to BAC system could be lessened by the use of dual-filter.
        4,000원
        5.
        2015.01 KCI 등재 서비스 종료(열람 제한)
        This study accessed the adsorption characteristics of the 9 trihalomethanes (THMs) on coal-based granular activated carbon (GAC). The breakthrough appeared first for CHCl3 and sequentially for CHBr2Cl, CHBr3, CHCl2I, CHBrClI, CHBr2I, CHClI2, CHBrI2, and CHI3. The maximum adsorption capacity (X/M) for the 9 THMs with apparent breakthrough points ranged from 1,175 μg/g (for CHCl3) to 11,087 μg/g (for CHI3). Carbon usage rate (CUR) for CHCl3 was 0.149 g/day, 5.5 times higher than for CHI3 (0.027 g/day).
        6.
        2006.09 KCI 등재 서비스 종료(열람 제한)
        This research aims to investigate the behavior of organic matter that causes bacterial re-growth and the formation of disinfectant by-products such as THM in water treatment, and to optimize conditions for a more efficient and conventional water facility. THM removed 51 % and 12 % through coagulation/sedimentation and filtration using a selected conventional system. In this experiment, the removal ratio of DOC was highest at 68 % when the Gt value was 42,000 and lowest at 41 % when the Gt value was 30,000. 77-84 % of total DOC was removed during coagulation/sedimentation, and 15-23 % was removed during filtration. When Gt values were between 30,000 and 66,000, over 50 % of high molecular matter above 10 K during coagulation/sedimentation was removed. Turbidity removed 98 % when the Gt value was 66,000. As the Gt value increased, the turbidity removal ratio increased. Turbidity removed over 20 % during the filtration process.
        7.
        2006.08 KCI 등재 서비스 종료(열람 제한)
        The formation characteristics of trihalomethanes (THMs) and haloacetic acids (HAAs) were investigated in chlorination of raw water of different organic mallet characteristics. The samples used in this study were hydrophobic (N-HPO) and hydrophilic fraction (N-HPI) (which were concentrated and separated from Nakdong river water), and humic acid (HA) (which is known as a strong hydrophobic acid) as a reference organic matter, the specific UV absorbance (SUVA) of which was 2.19, 1.15 and 7.92, respectively. With increasing chlorine contact time, THMFP and HAAFP (the formation potential of THMs and HAAs) increased, but their increase was different depending on the organic mallet characteristics (i.e., for N-HPI, THMFP was higher than HAAFP, but the inverse result was obtained for N-HPO and HA and the ratio between them was greater for HA), and the mainly formed chemical species were CHCI3 in case of THMs and dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA) in case of HAAs for N-HPO and HA (and the ratios of CHCI3 to total THMs and DCAA and TCAA to total HAAs for HA were higher than those for N-HPO), but for N-HPI, the ratio of brominated THMs was a little higher than that of CHCI3 and the ratio of DCAA and TCAA to total HAAs was lower than that of N-HPO, although they are main chemical species in case of HAAs. Comparing THMFP and HAAFP with the increase in bromide concentration added with those in not adding it, the former increased greatly and its increase was higher for the organic mallet with stronger hydrophobicity, but the latter was lower for N-HPO and N-HPI and was similar for HA. The main chemical species with increasing bromide concentration were CHBt3 in case of THMs regardless of organic matter characteristics, and dibromoacetic acid (DBAA) for N-HPO and N-HPI, DBAA and tribromoacetic acid (TBAA) for HA in case of HAAs. With increasing reaction temperature and pH, THMFP and HAAFP increased for the former, but for the latter, THMFP increased and HAAFP decreased, although the rate of increase or decrease was different with organic mallet characteristics.
        8.
        2004.07 KCI 등재 서비스 종료(열람 제한)
        Evaluated were household THMs exposure associated with the use of municipal tap water treated with chlorine and with ozone-chlorine. The current study measured the THMs concentrations in the tap water and indoor and outdoor air in the two types of household, along with an estimation of THMs exposure from water ingestion, showering, and the inhalation of indoor air. Chloroform was the most abundant THMs in all three media, yet no bromoform was detected in any sample. Contrary to previous findings, the fall water THMs concentrations exhibited no significant difference between the chlorine and ozone-chlorine treated water. However, the spring median chloroform concentration in the tap water treated with chlorine (17.6 ppb) was 1.3 times higher than that in the tap water treated with ozone-chlorine (13.4 ppb). It is suggested that the effects of the water parameters should be considered when evaluating the advantage of ozone-chlorine disinfection for THMs formation over chlorine disinfection. The indoor air THMs concentration trend was also consistent with the water concentration trend, yet the outdoor air THMs concentrations did not differ significantly between the two types of household. The indoor to outdoor air concentration ratios were comparable with previous studies. The THMs exposure estimates from water ingestion, showering, and the inhalation of indoor air suggested that, for the residents living in the surveyed households, their exposure to THMs in the home was mostly associated with their household water use, rather than the indoor air. The THMs exposure estimates from tap water ingestion were similar to those from showering.