A winter forage tetraploid rye (Secale cereale L.) cultivar, ‘Daegokgreen’, was developed at the Department of Central Area Crop Science, NICS, RDA in 2016. The mutant line ‘CG11003-8-B’, which was induced from rye cultivar ‘Gogu’ (diploid) by colchicine treatment, was selected for its excellent agronomic performance and was placed in preliminary yield trials for one year, 2013. The line was designated “Homil59” and was tested for regional yield trials at the four locations in Korea from 2014 to 2016. Finally, the new cultivar was named as the ‘Daegokgreen’ (grant number 8274). The leaf of cultivar ‘Daegokgreen’ is wide, long and dark-green color. The cultivar also has a big-size grain with light-brown color. The heading date of cultivar ‘Daegokgreen’ was April 17 which was 2 days later than that of check cultivar ‘Gogu’. The tolerance to cold and wet injury, and resistance to powdery mildew and leaf rust of the new cultivar were similar to those of the check cultivar but the resistance to the lodging of the new cultivar was stronger than that of the check. The average roughage fresh and dry matter yield of the new cultivar after 10 days from heading were 37.0 and 7.7 MT ha-1, respectively, which were similar to those (38.4 and 8.0 MT ha-1) of the check cultivar. The roughage quality of ‘Daegokgreen’ was higher in crude protein content (8.9%) than that of the check cultivar (7.9%), while was similar to the check in total digestible nutrients (56.9%). This cultivar is recommended for fall sowing forage crops at all of crop cultivation areas in Korea.
The objective of this study was to investigate to influence of glutathione (GSH) on development and antioxidant enzyme activity in tetraploid porcine embryos. Tetraploid embryos were produced using parthenogenetic 2-cell embryo by electrofusion method. Tetraploid embryo development was observed every 24 hours and intracellular antioxidant enzyme activity was measured at 120 hours after electrofusion. The 4-cell to 16-cell stage tetraploid embryos was increased in 100 and 500 μM GSH-treated groups compared control group at 48 hours (P < 0.05) but cleavage rates were not significantly different among the GSH treatment groups at 48, 72, 96, and 120 hours. Blastocyst formation was significantly increased by 300 and 500 μM GSH at 120 hours in tetraploid embryos (P < 0.05). But blastocyst cell number were not significantly different among the GSH treatment groups (16.4 ± 0.8, 16.8 ± 2.6, 18.5 ± 2.8 and 17.5 ± 1.8). The intracellular antioxidant enzyme level was increased in 500 μM GSH compared to 0 and 100 μM GSH (P < 0.05). We suggest that GSH may be improve development of tetraploid embryo in pigs.
This study was conducted to examine the effects of medium composition on organogenesis towards in-vitro cultured diploid and tetraploid Codonopsis lanceolata and obtain in-vitro mass propagation of superior species of C. lanceolata. Regarding MS medium composition for each concentration, diploid C. lanceolata was found to be declined. However, shoot and adventitious root formation were suppressed with higher mineral salt concentration, and active growth of shootand adventitious root was exhibited as 4.9 cm and 3.2 cm respectively in 1/2 MS medium. While in tetraploid C. lanceolata, it showed 2.9 cm and 3.2 cm respectively in 1/4 MS medium. In the case of sucrose concentration, no consistent decrease was observed for growth of shoot and adventitious root of diploid both at high and low concentration. The growth of shoot (at 3% concentration) and adventitious root (at 7% concentration) was 2.3 cm and 2.0 cm respectively. Although there was no difference in shoot formation of tetraploid C. lanceolata in all concentrations with the range of 1.7 ~ 1.8, there was a slight decrease in shoot growth at high concentration. Results revealed that the adventitious root formation was suppressed at high concentration. Concentration of agar exhibited no significant difference in shoot formation of diploid C. lanceolata at all concentrations. The highest result of adventitious growth (4.1 cm) was observed at 0.8% concentration. Slight inhibition of shoot formation and root formation of tetraploid C. lanceolata was observed at higher concentration. Shoot formation of diploid C. lanceolata also exhibited inhibition at higher concentration. Shoot formation of diploid C. lanceolata was increased at lower pH and shoot growth was the highest (2.3 cm) at pH 3.8. Adventitious root formation was higher at lower pH. Although there was no difference in shoot formation of tetraploid C. lanceolata presenting 1.7 ~ 1.8 regardless of high and low pH, growth inhibition was showed at higher pH. Adventitious root formation and growth showed a little higher result at pH 5.8.
Suspension culture is a useful tool for culturing embryonic stem (ES) cells in large-scale, but the stability of pluripotency and karyotype has to be maintained in vitro for clinical application. Therefore, we investigated whether the chromosomal abnormality of ES cells was induced in suspension culture or not. The ES cells were cultured in suspension as a form of aggregate with or without mouse embryonic fibroblasts (MEFs), and 0 or 1,000 U/ml leukemia inhibitory factor (LIF) was treated to suspended ES cells. After culturing ES cells in suspension, their karyotype, DNA content, and properties of pluripotency and differentiation were evaluated. As a result, the formation of tetraploid ES cell population was significantly increased in suspension culture in which ES cells were co-cultured with both MEFs and LIF. Tetraploid ES cell population was also generated when ES cells were cultured alone in suspension regardless of the existence of LIF. On the other hand, the formation of tetraploid ES cell population was not detected in LIF-free condition, in which MEFs were included. The origin of tetraploid ES cell population was turned out to be E14 ES cells and not MEFs by microsatellite analysis and the basic properties of them were still maintained despite ploidy-conversion to tetraploidy. Furthermore, we identified the ploidy shift from tetraploidy to near-triploidy as tetraploid ES cells were differentiated spontaneously. From these results, we demonstrated that suspension culture system could induce ploidy-conversion generating tetraploid ES cell population. Moreover, optimization of suspension culture system may make possible mass-production of ES cells.
본 연구에서는 중국 북경 옌칭(延慶)으로부터 북한 상원지역에 도입한 1년생 묘목 4배체 아까시나무를 대상으로 식재 입지별로 1년생 묘목의 생장특성을 분석하고, 엽내 3가지 성분의 함량 측정을 통해 향후 식재 후 수확한 엽의 사료첨가제로 이용 가능성을 검토하였다. 그 결과, (1) 상원지역에서 평지에 식재한 4배체 아까시나무는 중국의 옌칭지역 내 4배체 아까시나무에 비해 당년생 맹아지의 길이와 근원경이 50%정도 작게 나타났다. (2) 상원지역의 4개 사면입지에서 4배체 아까시나무의 당년생 맹아지의 길이 생장은 동, 서, 남사면에서 북사면에 비해 23~30% 크게 나타났고, 근원경은 동, 남사면의 4배 아까시나무가 북, 서사면에 비해 14~23% 크게 나타났다. (3) 상원지역에서 4배체 아까시나무의 엽내 조단백질과 조회분 함량은 중국 옌칭지역 내 4배체 아까시나무와 마찬가지로 일반 아까시나무 잎에 비해 40% 이상 높게 나타났다.
The influence of ploidy level on agronomic characteristics in italian ryegrass, Lolium multiflorum Lam, italicum, was studied using diploids (2x) and tetraploids (4x) on the upland of Livestock Experiment Station, Suweon. The results are summarized as fol
Background : Morus alba L. (M. alba L.) belongs to the family Moraceae and has been industrially used as a food source for the silkworm and as a sedative in traditional medicine due to their adaptogenic, hypotensive, anti-inflammatory, hypoglycemic, and anti-adipogenic properties. In this study, metabolic profiling of diploid and tetraploid in Morus alba L. ‘Cheongil’
Methods and Results : Carotenoids are secondary metabolites found in most of the higher plants. In the current study, the levels of carotenoids were much higher in tetraploid of M. alba L. ‘Cheongil’ than diploid of M. alba L. ‘Cheongil’. Particularly, the levels of lutein, 13z-β-carotene, α-carotene, E-β-carotene, and 9Z-β-carotene were 2.51, 5.53, 7.68, 4.43, and 4,46 times higher in tetraploid of M. alba L. ‘Cheongil’, respectively. Additionally, hierarchical cluster analysis (HCA) was carried out using Pearson’s correlation results in order to determine the relationships between metabolites of diploid and tetraploid in Morus alba L. ‘Cheongil’. The results of HCA revealed the degree of correlation among 42 metabolites, which were identified and quantitated by GC-TOFMS. Among TCA organic acids, succinic acid was positively correlated with fumaric acid (r = 0.8250, p < 0.0001) and malic acid (r = 0.9436, p < 0.0001). Among carbohydrates, fructose was positively correlated with glucose (r = 0.9398, p < 0.0001) and mannose (r = 0.9394, p < 0.0001).
Conclusion : In this study, we investigated primary metabolites and secondary metabolites (carotenoids) in diploid and tetraploid in Morus alba L. ‘Cheongil’ in order to provide information on the difference between
Background : This study was performed to investigate the morphological and growth characteristics and metabolomics approach for the diploid and tetraploid Polygonum multiflorum Thunb (PMT).
Methods and Results : The present study was performed to investigate the effective induction method of tetraploid plants using colchicine treatment. To know the morphological and growth characteristics of PMT overground growing was investigated about the stem diameter, leaf length and width, a scape, inflorescence length, chlorophyll, seed length and seed width. Metabolite profiles from P. multiflorum were analyzed by an ultra performance liquid chromatography–quadrupole - time of flight (UPLC-Q-TOF) mass spectrometry (MS). The number of stomata and chlorophyll content was also higher in tetraploid. However, the physiological and morphological characteristics of the newly developed tetraploid showed noticeable results compared to the diploid plant. Also, the inherent characteristics of a newly acquired tetraploid also exhibited better results compared to diploid. Twenty one compounds including catechins from leaf and thirty compounds including stilbenes from roots were identified as major metabolites of PMT. The levels of most root metabolites except dethiobiotin, epigallocatechin gallate, procyanidin B1, epiafzelechin 3-O-gallate, and moupinamide from PMT were higher than those of diploid. The levels of 2,3-digalloylglucose, fallacinol, tricin, physcion-8-O-β-D-glucoside, torachrysone-8-O-β-D-glucopyranoside, questin, aloe-emodin 8-O-(6′-O-acetyl)-glucoside, polydatin, 2,5-dimethyl-7-hydroxychromone, 3,5,4'-trihydroxystilbene, aloe-emodin, myrciacitrin II and ω-hydroxyemodin from teraploid PMT were 342, 32, 31, 21, 11, 11, 9, 8, 6, 5, 4, and 2 times, respectively, higher.
Conclusion : From above results, overground growing of tetraploid P. multiflorum is fairly better than that of native P. multiflorum.
Polyploidy is occurred by the process of endomitosis or cell fusion and usually represent terminally differentiated stage. Their effects on the developmental process were mainly investigated in the amphibian and fishes, and only observed in some rodents as mammalian model. Recently, we have established tetraploidy somatic cell nuclear transfer-derived human embryonic stem cells (SCNT-hESCs) and examined whether it could be available as a research model for the polyploidy cells existed in the human tissues. Two tetraploid hESC lines were artificially acquired by reintroduction of remained 1st polar body during the establishment of SCNT-hESC using MII oocytes obtained from female donors and dermal fibroblasts (DFB) from a 35-year-old adult male. These tetraploid SCNT-hESC lines (CHA-NT1 and CHA-NT3) were identified by the cytogenetic genotyping (91, XXXY,-6, t[2:6] / 92,XXXY,-12,+20) and have shown of indefinite proliferation, but slow speed when compared to euploid SCNT-hESCs. Using the eight Short Tendem Repeat (STR) markers, it was confirmed that both CHA-NT1 and CHA-NT3 lines contain both nuclear and oocyte donor genotypes. These hESCs expressed pluripotency markers and their embryoid bodies (EB) also expressed markers of the three embryonic germ layers and formed teratoma after transplantation into immune deficient mice. This study showed that tetraploidy does not affect the activities of proliferation and differentiation in SCNT-hESC. Therefore, tetraploid hESC lines established after SCNT procedure could be differentiated into various types of cells and could be an useful model for the study of the polyploidy cells in the tissues.
Background : Tetraploid plants are bigger in the size of fruits, leaves, stems, and roots than diploid plants due to bigger cells attributed to chromosome multiplication. The advantage of tetraploid plants includes breakdown of self-incompatibility and increase of disease resistance. This study was carried out to gain tetraploid resources for breeding of new boxthorn varieties having pest resistance, higher yield, and self-compatibility. Methods and Results : Tetraploid lines and maternal varieties used in this study were C0148-10 and C0412-1 from Cheongyang-jaerae, M0148-94 and M0148-120 from Myongan, B0148-43 and B0148-78 from Bulro, D0148-62 and D0148-72 from Cheongdae, and Y0148-2 and Y0148-24 from Youngha. For organic acid composition of tetraploid lines and matrenal varieties, malic acid was highest as 1.47 – 4.6 ㎎/g in fruit, and citric acid and succinic acid were highest in leaf as 2.67 – 4.08 ㎎/g and 4.28 – 6.00 ㎎/g. Total organic acid content in root ranged from 1.78 to 3.23 ㎎/g, lower than in fruit and leaf. Of 11 fatty acids composing the boxthorn fruit, linoleic acid was highest as 25.36 – 50.33 ㎎/g. For leaf, linolenic acid was highest as 4.39 – 8.77 ㎎/g. Linoleic acid was highest as 1.65 – 6.98 ㎎/g of all fatty acids in root. 19 free amino acids were analyzed. Average content of essential amino acids in fruit was 6.64% and lysine was highest as 1.57%. Non-essential amino acid content was 8.26% and serine was highest as 2.72% of all non-essential amino acids in fruit. D0148-62 was highest in the total amino acid and the essential amino acid as 23.58% and 10.19%, respectively. Total amino acid content in leaf was 26.49%. Essential amino acid was 12.12% and leucine was highest as 2.08%. Non-essential amino acid was 14.37% and serine was highest as 4.61%. Total amino acid content in root was 13.25%. Essential amino acid was 6.66% and arginine was highest as 2.58%. Non-essential amino acid was 6.59% and serine was highest as 2.60%. Conclusion : Organic acid content increased in fruit of tetraploid lines and lines induced from Cheongyang-jaerae, Myongan, and Cheongdae were higher in contents of linoleic acid, oleic acid and palmitic acid, resulted in total fatty acid increasing. This shows several induced tetraploid boxthorn lines are very useful resources in breeding new varieties.
Background : Tetraploid plants are bigger in the size of fruits, leaves, stems, and roots than diploid plants due to bigger cells attributed to chromosome multiplication. The advantage of tetraploid plants includes breakdown of self-incompatibility and increase of disease resistance. This study was carried out to gain tetraploid resources for breeding of new boxthorn varieties having pest resistance, higher yield, and self-compatibility. Methods and Results : Tetraploid lines and maternal varieties used in this study were C0148-10 and C0412-1 from Cheongyang-jaerae, M0148-94 and M0148-120 from Myongan, B0148-43 and B0148-78 from Bulro, D0148-62 and D0148-72 from Cheongdae, and Y0148-2 and Y0148-24 from Youngha. Betaine content was highest as 0.7 - 1.62% in leaf, followed by 0.55 - 1.17% in fruit and 0.04 - 0.23% in root. Betaine content in plant parts of several tetraploid lines increased compared to martenal varieties, higher in fruit for 5 lines including D0148-72, B0148-78, and C0142-1, higher in leaf for 5 lines including C0148-10, C0412-1, and M0148-94, and higher in root for 7 lines including Y0148-2, M0148-94, and M0148-120. Rutin content in leaf ranged 4.0 – 388.55 ㎎% and was highest as 388.55 ㎎% in Y0148-24. Tannin content in leaf of tetraploid lines was 4.70 - 6.12%, highest as 6.12% in Y0148-2 and M0148-120, similar to the maternal varieties. Youngha of the diploid plants showed the highest tannin content of 7.08%. Total free sugar content in tetraploid lines was higher as 8.53 - 12.53% than maternal varieties. Conclusion : Betaine and rutin contents increased in several tetraploid lines and Total free sugar content in tetraploid lines was higher as 8.53 - 12.53% than maternal varieties. This shows tetraploid boxthorn lines are very useful resources in breeding new varieties.
Background : Tetraploid plants are bigger in the size of fruits, leaves, stems, and roots than diploid plants due to bigger cells attributed to chromosome multiplication. The advantage of tetraploid plants includes breakdown of self-incompatibility and increase of disease resistance. This study was carried out to gain tetraploid resources for breeding of new boxthorn varieties having pest resistance, higher yield, and self-compatibility. Methods and Results : Tetraploid lines for this study were C0148-10 and C0412-1 from Cheongyang-jaerae (CJ), M0148-94 and M0148-120 from Myongan (MA), B0148-43 and B0148-78 from Bulro (BL), D0148-62 and D0148-72 from Cheongdae (CD), and Y0148-2 and Y0148-24 from Youngha (YH). Flower width ranged 13.2~17.4mm. Flower, pollen and anther were bigger than the mother plants. Pollen germination rate of the tetraploid lines ranging 36.1~58.8% was lower than mother plants (46.5~67.6%). Self-fertilization rate in 4 varieties, MA, BL, CD and YH was low as 1.3%, 4.0%, 1.4% and 4.7% respectively indicating that mother plants are self-incompatible. Self-fertilization rate in tetraploid lines was higher as 58.1~87.5% and B0148-43, M0148-120, and D0148-72 showed the highest self-fertilization rate over 80%. Conclusion : Tetraploid lines showed higer self-fertilization rate than mother plants that they were expected as valuable resources for new boxthorn variety having self-compatibility.
Background : Tetraploid plants are bigger in the size of fruits, leaves, stems, and roots than diploid plants due to bigger cells attributed to chromosome multiplication. The advantage of tetraploid plants includes breakdown of self-incompatibility and increase of disease resistance. This study was carried out to gain tetraploid resources for breeding of new boxthorn varieties having pest resistance, higher yield, and self-compatibility. Methods and Results : 10 Tetraploid lines by colchicine treatment were compared with diploid boxthorn varieties on growth and yield characteristics. Tetraploid lines induced from each varieties were C0148-10 and C0412-1 from Cheongyang-jaerae (CJ), M0148-94 and M0148-120 from Myongan (MA), B0148-43 and B0148-78 from Bulro (BL), D0148-62 and D0148-72 from Cheongdae (CD), and Y0148-2 and Y0148-24 from Youngha (YH). The ratio of stem diameter to stem length in tetraploid lines increased to 0.86 - 1.16 compared to 0.79 - 0.87 of the mother plants whereas number of branches decreased. The ratio of leaf length to width ranged from 2.0 to 3.3, lower than the mother plants. Leaf weight and chlorophyll content also increased compared to the mother plants. C0148-10, C0412-1, Y0148-2, and Y0148-24 showed 34~346% increase in dry fruit yield per 10a compared to mother plants. Conclusion : Above selected tetraploid lines had larger and heavier leaves and C0148-10, C0412-1, Y0148-2, and Y0148-24 were higher in fruit yield than mother plants that the selected tetraploid lines were expected as useful resources for new leaf vegetable and higher yield boxthorn varieties.
Background : This study was performed to investigate the morphological and growth characteristics of tetraploid Polygonum multiflorum L. with colchicine treatment, and to clarify its effective induction and time for the increase of rhizome hypertrophy and effective components. Methods and Results : The induction of tetraploid P. multiflorum were done with colchicine treatment of 0.1, 0.5, and 1.0% conc. and the time was treated with 12, 24, and 48 hrs, respectively. DMSO 1% is treated for the effective penetration of colchicine with constant-temperature oven at 24C. Leaf explant was added the HR-A solution stained with HR-B solution, and then determined whether DNA contents of the doubles or not. Seed stand rate showed lower tendency as higher treatment concentration and as delayed the treatment time. When treated in DMSO 1% with 48 hr, seed stand was so small rate with 2%, and treated in 0.5% with 12 hr, seed stand was recorded higher rate with 33%. When treated in 0.5% colchicine with 24 hr, chimera and tetraploid induction rates were highest and obtained 29 individual chimera and 5 individual tetraploid. On overground growing, mean stem diameter of tetraploid (11.3 ㎜) is two times thicker than that of diploid (6.4 ㎜), with the vigorous growth. leaf length and width of tetraploid was 9.1 and 6.2 ㎝, respectively, and that of diploid was 6.8, and 5.1 ㎝, respectively. Stem diameter of a scape was also more thicker tendency in tetraploid than in diploid, chlorophyll contents over 29% existed in tetraploid. Investigated result from stoma no. and size of leaf with 400 magnification, stoma no. of diploid (26 individual) was four times higher than that of tetraploid (7 individuals), the size of tetraploid (38 ㎛) is twice longer in size of diploid (18 ㎛) and stoma area are broaden in four times. Seed length of tetraploid (3 ㎜) is longer than that of diploid (22 ㎜); but, seed width of tetraploid (22 ㎜) is widen than that of diploid (14 ㎜) in seed size comparison. That is, seed length is bigger in 1.4 times and seed width is bigger in 1.6 times, and seed surface area is broaden in two times. Conclusion : From above results, overground growing of tetraploid P. multiflorum is fairly better than that of native P. multiflorum. In the future, this tetraploid variety will promote to register when recognize the excellence than native species after tested the disease tolerance, underground growing characteristics, and key index component.
The present study was performed to compare the morpho-physiological characteristics of the tetraploid and diploid varieties of Platycodon grandiflorum and to obtain basic data for cultivating a tetraploid variety with high yield and content of functional substances. The plant height of the tetraploid variety (54.0 cm) was slightly higher than that of the diploid variety. The leaf length and width of the tetraploid variety were 10.2 cm and 7.3 cm, respectively. The results obtained from the present study revealed that the form of the leaf changed from lanceolate to ovate, and the chlorophyll content in the tetraploid variety (16.7) was slightly higher than that in the diploid variety. The photosynthetic rate significantly increased (24%) to 13.4 μmol CO2·m -2 ·s -1 in the tetraploid variety from that of the diploid variety. The pollen viability of the tetraploid variety was decreased by approximately 33% with respect to that of the diploid variety, but this did not have a significant adverse effect on seed production. The fresh weight of tetraploid P. grandiflorum was 49.4 g, which was approximately 44% higher than that of the diploid variety.
The present study aimed to compare and investigate the morphological characteristics and yield components according to ploidy level of diploid and tetraploid Platycodon grandiflorum under vinyl-greenhouse and open field conditions. Plant height of diploid and tetraploid P. grandiflorum was 51.3 ㎝, 54.0 ㎝, respectively. The results revealed that the plants grown in the vinyl-greenhouse showed significantly higher growth compared to those grown in the open field. Regardless of the growing place, diploid and tetraploid of P. grandiflorum showed the rapid elongation of internodes after 4 and 3 internodes respectively and elongation tends to be decreased as entering the flower-bud differentiation period. The starting day of flowering in vinyl-greenhouse cultivation was found to be faster than that of the open field cultivation by 2∼ 3 days and tended to be delayed by about 5∼6 days in tetraploid P. grandiflorum compared to diploid. Fresh weight of roots from the vinyl-greenhouse cultivation showed a high quantity as 34.2g and 49.4g in diploid and tetraploid P. grandiflorum, respectively and especially tetraploid P. grandiflorum was found to be increased by approximately 44.4% compared to other plots.