검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 31

        3.
        2023.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, a bipolar visible light responsive photocatalytic fuel cell (PFC) was constructed by loading a Z-scheme g-C3N4/ carbon black/BiOBr and a Ti3C2/ MoS2 Schottky heterojunction on the carbon brush to prepare the photoanode and photocathode, respectively. It greatly improved the electron transfer and achieved efficient degradation of organic pollutants such as antibiotics and dyes simultaneously in two chambers of the PFC system. The Z-scheme g-C3N4/carbon black/BiOBr formed by adding highly conductive carbon black to g-C3N4/BiOBr not only effectively separates the photogenerated carriers, but also simultaneously retains the high reduction of the conduction band of g-C3N4 and the high oxidation of the valence band of BiOBr, improving the photocatalytic performance. The exceptional performance of Ti3C2/ MoS2 Schottky heterojunction originated from the superior electrical conductivity of Ti3C2 MXene, which facilitated the separation of photogenerated electron–hole pairs. Meanwhile, the synergistic effect of the two photoelectrodes further improved the photocatalytic performance of the PFC system, with degradation rates of 90.9% and 99.9% for 50 mg L− 1 tetracycline hydrochloride (TCH) and 50 mg L− 1 rhodamine-B (RhB), respectively, within 180 min. In addition, it was found that the PFC also exhibited excellent pollutant degradation rates under dark conditions (79.7%, TCH and 97.9%, RhB). This novel pollutant degradation system is expected to provide a new idea for efficient degradation of multiple pollutant simultaneously even in the dark.
        4,900원
        5.
        2022.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Ti3C2Tx MXene, which is a representative of the two-dimensional MXene family, is attracting considerable attention due to its remarkable physicochemical and mechanical properties. Despite its strengths, however, it is known to be vulnerable to oxidation. Many researchers have investigated the oxidation behaviors of the material, but most researches were conducted at high temperatures above 500 oC in an oxidation-retarding environment. In this research, we studied changes in the structural and electrical properties of Ti3C2Tx MXene induced by low-temperature heat treatments in ambient conditions. It was found that a number of TiO2 particles were formed on the MXene surface when it was mildly heated to 200 oC. Heating the material to higher temperatures, up to 400 oC, the phase transformation of Ti3C2Tx MXene to TiO2 was accelerated, resulting in a TiO2/ Ti3C2Tx hybrid. Consequently, the metallic nature of pure Ti3C2Tx MXene was transformed to semiconductive behavior upon heat-treating at ≥ 200 oC. The results of this research clearly demonstrate that Ti3C2Tx MXene may be easily oxidized even at low temperatures once it is exposed to air.
        4,000원
        6.
        2022.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recently, high-entropy carbides have attracted considerable attention owing to their excellent physical and chemical properties such as high hardness, fracture toughness, and conductivity. However, as an emerging class of novel materials, the synthesis methods, performance, and applications of high-entropy carbides have ample scope for further development. In this study, equiatomic (Hf-Ti-Ta-Zr-Nb)C high-entropy carbide powders have been prepared by an ultrahigh- energy ball-milling (UHEBM) process with different milling times (1, 5, 15, 30, and 60 min). Further, their refinement behavior and high-entropy synthesis potential have been investigated. With an increase in the milling time, the particle size rapidly reduces (under sub-micrometer size) and homogeneous mixing of the prepared powder is observed. The distortions in the crystal lattice, which occur as a result of the refinement process and the multicomponent effect, are found to improve the sintering, thereby notably enhancing the formation of a single-phase solid solution (high-entropy). Herein, we present a procedure for the bulk synthesis of highly pure, dense, and uniform FCC single-phase (Fm3m crystal structure) (Hf-Ti-Ta-Zr-Nb)C high-entropy carbide using a milling time of 60 min and a sintering temperature of 1,600oC.
        4,000원
        7.
        2018.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study is the process of finding answers to the following questions. Cultural content is needed to study Vietnamese language? Do Vietnamese language learners feel the need for classes using cultural content? Do Vietnamese teachers use cultural contents in class? In order to find out the answer, I conducted a questionnaire survey on Vietnamese students in Chungnam Foreign Language High School, interviewed teachers and analyzed the case examples. As a result of the questionnaires and interviews, it was found that the necessity of cultural contents development in Vietnamese language education is a requirement for both teachers and learners. Based on these results, we developed a case study on cultural education contents for Vietnamese language education. However, the model of teaching Vietnamese language utilizing cultural contents needs to be developed through more diverse academic analysis. Its effectiveness should also be investigated in depth. We will propose this as a future research project.
        6,700원
        9.
        2014.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Thermal shock resistance property has recently been considered to be one of the most important basic properties, in the same way that the transverse-rupture property is important for sintered hard materials such as ceramics, cemented carbides, and cermets. Attempts were made to evaluate the thermal shock resistance property of 10 vol% TaC added Ti(C,N)-Ni cermets using the infrared radiation heating method. The method uses a thin circular disk that is heated by infrared rays in the central area with a constant heat flux. The technique makes it possible to evaluate the thermal shock strength (Tss) and thermal shock fracture toughness (Tsf) directly from the electric powder charge and the time of fracture, despite the fact that Tss and Tsf consist of the thermal properties of the material tested. Tsf can be measured for a specimen with an edge notch, while Tss cannot be measured for specimens without such a notch. It was thought, however, that Tsf might depend on the radius of curvature of the edge notch. Using the Tsf data, Tss was calculated using a consideration of the stress concentration. The thermal shock resistance property of 10 vol% TaC added Ti(C,N)-Ni cermet increased with increases in the content of nitrogen and Ni. As a result, it was considered that Tss could be applied to an evaluation of the thermal shock resistance of cermets.
        4,000원
        10.
        2013.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Nanocrystalline materials have recently received significant attention in the area of advanced materials engineering due to their improved physical and mechanical properties. A solid-solution nanocrystalline powder, (Ti,Mo)C, was prepared via high-energy milling of Ti-Mo alloys with graphite. Using XRD data, the synthesis process was investigated in terms of the phase evolution. Rapid sintering of nanostuctured (Ti,Mo)C hard materials was performed using a pulsed current activated sintering process (PCAS). This process allows quick densification to near theoretical density and inhibits grain growth. A dense, nanostructured (Ti,Mo)C hard material with a relative density of up to 96 % was produced by simultaneous application of 80 MPa and a pulsed current for 2 min. The average grain size of the (Ti,Mo)C was lower than 150 nm. The hardness and fracture toughness of the dense (Ti,Mo)C produced by PCAS were also evaluated. The fracture toughness of the (Ti,Mo)C was higher than that of TiC.
        4,000원
        11.
        2013.07 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In order to clarify the effect of C/Ti atom ratios(χ) on the deformation behavior of TiCχ at high temperature, singlecrystals having a wide range of χ, from 0.56 to 0.96, were deformed by compression test in a temperature range of 1183~2273Kand in a strain rate range of 1.9×10−4~5.9×10−3s−1. Before testing, TiCχ single crystals were grown by the FZ method ina He atmosphere of 0.3MPa. The concentrations of combined carbon were determined by chemical analysis and the latticeparameters by the X-ray powder diffraction technique. It was found that the high temperature deformation behavior observedis the χ-less dependent type, including the work softening phenomenon, the critical resolved shear stress, the transitiontemperature where the deformation mechanism changes, the stress exponent of strain rate and activation energy for deformation.The shape of stress-strain curves of TiC0.96, TiC0.85 and TiC0.56 is seen to be less dependent on χ, the work hardening rate afterthe softening is slightly higher in TiC0.96 than in TiC0.85 and TiC0.56. As χ decreases the work softening becomes less evidentand the transition temperature where the work softening disappears, shifts to a lower temperature. The τc decreasesmonotonously with decreasing χ in a range of χ from 0.86 to 0.96. The transition temperature where the deformationmechanism changes shifts to a lower temperature as χ decreases. The activation energy for deformation in the low temperatureregion also decreased monotonously as χ decreased. The deformation in this temperature region is thought to be governed bythe Peierls mechanism.
        4,000원
        12.
        2011.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Prior austenite grain size plays an important role in the production of high strength hot-rolled steel. This study investigated the effect of Ti and C contents on the precipitates and prior austenite grain size. Steel with no Ti solutes had prior austenite grain size of about 620 μm. The addition of Ti ~ 0.03 wt.% and 0.11 wt.% reduced the prior austenite grain size to 180 μm and 120 μm, respectively. The amount of Ti required to significantly decrease the prior austenite grain size was in the range of 0.03 wt.%. However, the amount of carbon required to significantly decrease the prior austenite grain size was not present from 0.04 wt.% to 0.12 wt.%. Oxides of Ti (Ti2O3) were observed as the Ti content increased to 0.03 wt.%. The specimen containing 0.11 wt.% of Ti exhibited the complex carbides of (Ti, Nb) C. The formation of Ti precipitates was critical to reduce the prior austenite grain size. Furthermore, the consistency of prior austenite grain size increased as the carbon and Ti contents increased. During the reheating process of hot-rolled steel, the most critical factor for controlling the prior austenite grain size seems to be the presence of Ti precipitates.
        4,000원
        13.
        2008.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Ti(C,N) solid solutions in hot-pressed Ti() (x=0.0, 0.3, 0.5, 0.7, 1.0) and 40TiC-40TiN-20Ni (in wt.%) cermet were characterized in this study. For hot-pressed Ti(C,N)s, the lattice parameters and hardness values of Ti(C,N) were determined by using XRD (X-Ray Diffraction) and nanoindentation. The properties of hot-pressed Ti(C,N) samples changed linearly with their carbon or nitrogen contents. For the TiC-TiN-Ni cermet, the hardness of the hard phase and binder phase were determined by nanoindentation in conjunction with microstructural observation. The measured hardness values were GPa for the binder phase and GPa for the hard phase, which was close to the hardness of hot-pressed Ti().
        4,000원
        14.
        2008.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The indentation technique has been one of the most commonly used techniques for the measurement of the mechanical properties of materials due to its experimental ease and speed. Recently, the scope of indentation has been enlarged down to the nanometer range through the development of instrumentations capable of continuously measuring load and displacement. In addition to testing hardness, the elastic modulus of submicron area could be measured from an indentation load-displacement (P-h) curve. In this study, the hardness values of the constituent phases in Ti()-NbC-Ni cermets were evaluated by nanoindentation. SEM observation of the indented surface was indispensable in order to separate the hardness of each constituent phase since the Ti()-based cermets have relatively inhomogeneous microstructure. The measured values of hardness using nanoindentation were GPa for hard phase and GPa for binder phase. The effect of NbC addition on hardness was not obvious in this work.
        4,000원
        15.
        2007.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The microstructure and hardness of (W,Ti)C cemented carbides with a different metallic binder composition of Ni and Co fabricated by powder technology were investigated. The densifications of the prepared materials were accomplished by using vacuum sintering at . Nearly full dense (W,Ti)C cemented carbides were obtained with a relative density of up to 99.7% with 30 wt.% Co and 99.9% with 30 wt.% Ni as a metallic binder. The average grain size of the (W,Ti)C-Co and the (W,Ti)C-Ni was decreased by increasing the metallic binder content. The hardness of the dense (W,Ti)C-15 wt%Co and (W,Ti)C-15 wt%Ni, was greater than that of the other related cemented carbides; in addition, the cobalt-based cemented carbides had greater hardness values than the nickel-based cemented carbides.
        4,000원
        17.
        2006.04 구독 인증기관·개인회원 무료
        Sintered Ti(C,N)-based cermets were treated with hot isostatic pressing (HIP) at different nitrogen pressures. The tribological properties of the treated cermets have been evaluated. The results show that a hard near-surface area rich in TiN formed after HIP treatment. The cermets treated at higher pressure had a relatively lower friction coefficient and specific wear rate. In all cases the microhardness of treated cermets is higher than that without HIP natridation. The wear mechanisms of cermets were hard particle flaking-off and ploughing. It was also found that the HIP natridation is well-suited for improving the tribological properties of cermets.
        19.
        2006.04 구독 인증기관·개인회원 무료
        We have studied the effect of C/Ti atomic ratio of TiCx (x=0.5, 0.75 and 1.0) raw powder on the properties of the Ti-Mo-WTiC sintered hard alloy. The decrease of C/Ti atomic ratio accelerated the densification in the sintering process. The hardness was remarkably improved up to 1350HV with decreasing the C/Ti atomic ratio because of increase of TiCx phase volume content and its fine dispersion. From the results of electro-chemical tests in acid and 3% NaCl solutions, it was obvious that every alloy had excellent corrosion resistance, which meant about 200 times better than that of WC-Co cemented carbide.
        1 2