This paper focuses on methods for quantifying landfill gas emissions, including odor, odor generation mechanisms, odor emission characteristics according to the time of waste deposition, and odor measurement data from landfills. This study analyzed the concentration ranges and median values of 22 odor compounds measured at landfill gas collection wells and various landfill surface locations across both domestic and international landfill sites. These locations included active operational areas, final cover surfaces, and leachate treatment zones. The odor with the highest measured concentration at the landfill gas collection well was H2S (with a median value of 818,616 mg m–3). During landfill operations and on the surface of uncovered landfill layers, the concentrations of NH3 (with a median value of 1,613 mg m–3) and H2S (with a median value of 279.5 mg m–3) were found to be high . Concentrations of toluene, xylene, ketones, and sulfide odors were also high at covered landfill surfaces. Additionally, NH3, styrene, and H2S had high concentrations in the leachate treatment area. The odor intensity, measured on the surface of covered sanitary landfills for domestic waste, ranged from 6 to 2,080 mg m–3 (dilution to threshold). The concentrations of NH3 and H2S were relatively high in domestic sanitary landfills. The odorous compounds that contributed the most to odor intensity were nitrogen-containing odors, sulfur-containing odors, and aldehydes. In order to effectively manage landfill odors in the future, research should be continuously conducted to accurately measure and predict odor emission fluxes from landfills. In addition, it will be necessary to develop emission reduction technologies that take into account landfill odor emission characteristics.
This study analyzed the emission characteristics of major air pollutants (dust, nitrogen oxides, hydrogen chloride, and carbon monoxide) emitted from domestic public waste incineration facilities based on their operating elements. Using automatic measuring equipment for smokestacks (TMS), data was collected from 97 facilities from 2015 to 2023. The emission source unit (kg/ton) was evaluated based on the facility’s capacity, aging level, and incineration type. Emissions were calculated, and descriptive statistical analysis was performed based on the mean, standard deviation, and coefficient of variation. As a result of the analysis, it was found that the larger the facility capacity, the lower the average emission and volatility, which suggests that the operational stability of large facilities is high. On the other hand, facilities that had deteriorated for 10 to 15 years had the highest emission rates, and emissions decreased in facilities that were aged more than 20 years. In addition, the pyrolysis and high-temperature melting incineration facilities had lower NOx and HCl emissions than the conventional incineration type. Furthermore, CO showed the greatest volatility overall, which was found to be particularly difficult to manage in facilities in the early to mid stages of aging. These results provide empirical evidence that the structural characteristics and incineration type of incineration facilities have a significant impact on air pollutant emissions and can serve as useful basic data for policy-making, including for implementing region-wide initiatives and planning major repairs in the future.
국내 태양광 산업은 2000년대 초 크게 성장하였으나 태양광 패널의 수명이 도래함에 따라 폐패널 발생량이 급격히 증 가할 것으로 예상된다. 그러나 태양광 패널의 주요 구성요소인 강화유리는 상용화된 재활용 기술이 부족하여 대부분 파 쇄 후 매립되고 있는 실정이다. 향후 대량 발생하게 될 폐패널의 재활용 기술 개발 필요성이 대두됨에 따라 태양광 폐패 널의 강화유리를 아스팔트 콘크리트 재료로서 재활용할 수 있는 기술을 개발하고자 하였다. 따라서 폐패널 유리 골재를 제조 및 이를 적용한 아스팔트 혼합물의 배합설계를 수행하였으며 일반 아스팔트 혼합물과 폐패널 유리 골재 아스팔트 혼합물의 성능평가 및 경제성을 비교·분석하였다. 그 결과 폐패널 유리 아스팔트 혼합물이 저온균열 저항성을 제외한 모 든 성능 시험에서 우수한 성과를 보였으며, 경제성 또한 일반 아스팔트 혼합물과 비교 시 뛰어난 것으로 나타났다.
This study investigated the process of reclaiming Mo from calcined waste hydrotreating (CWHT) catalysts using tributyl phosphate (TBP) as an extractant with electron-withdrawing properties. Using inductively coupled plasma (ICP) technology, the optimal operating conditions for Mo recovery were determined based on the metal ion content in different processes. Considering the pH impact on metal species in solution, an acid leaching solution with 6 M sulfuric acid was employed. After 3 h of reaction, 94 wt% of the Mo was transferred from the WHT catalyst to the acid leaching solution. Adjusting the filtrate to a pH of 1.5 allowed the TBP to selectively extract over 98.8 wt% of Mo from the aqueous filter solution into the organic phase. MC-Cabe-Thiele theory predicts that a three-stage countercurrent extraction can reduce Mo to less than 0.2 wt%. Stripping moved approximately 98 wt% of the Mo from the organic to the inorganic phases. The recovered colorless organic tributyl phosphate can be used in the recycled extraction process.
The objectives of the study were to examine food waste generation and reduction efforts at home, and to identify factors affecting the intention to reduce food waste. A total of 3,321 food buyer responses were used from the 2022 Consumer Behavior Survey for Food of the Korea Rural Economic Institute. Statistical methods for a complex sample were applied by using a SPSS program (ver. 26.0). The average daily food waste generation per household significantly differed by the main food purchaser’s age and household size. Plate waste and food waste from preparation were the main types of food waste. A multiple regression analysis revealed that intention to reduce food waste was influenced by the main types of food waste, the average daily amount of food waste, the perceived amount of food waste, and the perceived importance of food waste reduction after adjusting for the age of the main food purchaser and household size. Since the amount of food waste was affected by a series of food behaviors as well as consumer’s intention to reduce waste, empirical research on the types and amounts of food waste generated in Korean households and qualitative research on behaviors and attitude affecting food waste are needed.
본 연구는 시멘트 산업의 대체연료(폐합성수지 등) 사용량 증대에 따라 이를 활용한 탄소배출 저감 및 시멘트/콘크리트 제조 적용 기술 및 방안에 대해 검토하고자 했으며, 향후 시멘트 산업의 탄소중립 실현을 위한 기초 자료로써 활용하고자 한다. 시멘트 제조 에 있어 폐합성수지 사용은 경제적 장점과 높은 발열량으로 인해 연료로서의 가치가 높은 것으로 나타났으며, 열경화성 수지는 부가가 치가 높은 저탄소 시멘트 복합체의 비반응성 골재로 작용할 수 있는 것으로 확인되었으며, 감마선 조사는 다양한 폐플라스틱의 성능 평가에 적용되는 것으로 확인되었다.
The research led to the development of a specialized knife for cutting waste ropes and nets from marine waste. The composition of the manufactured knife was analyzed with XRF equipment, and the main components were iron and chromium, with small amounts of molybdenum, vanadium, and nickel. Vickers hardness measurements showed similar hardness values at the surface and center, and a metallographic microscope examination of the knife surface texture revealed a fine-grained martensite structure. The low heating value of the waste rope and waste net was measured, and the low heating value was higher than 3,500 kcal/kg, which is the quality certification standard for solid refuse fuel.
전 세계적으로 기후변화 등의 환경 문제와 자원고갈 문제가 심각해짐에 따라 화석연료의 의존 도를 낮추고 탄소중립을 실현할 수 있는 대체 에너지원 확보가 중요해졌다. 이에 따라 국내 발전분야에서 는 중유를 대체할 수 있는 폐자원 유래 바이오중유를 2014년부터 시범보급하여 2019년 상용화를 시작하였 다. 본 연구에서는 2014년 시범보급 시작부터 2023년까지 상용화 기간을 포함한 10년간 국내에서 발전용 연료로 사용된 바이오중유를 대상으로 원료 수급 데이터 및 연료 품질 모니터링 데이터를 연도별로 분석하 여 주요 품질 특성의 변화를 평가하였다. 시범보급 초기에는 저가 원료의 사용 및 연료 제조기술의 부족 등으로 인화점, 동점도, 황분, 회분, 전산가, 금속분, 질소분, 인함량 등 대부분 품질 항목의 변동성이 컸으 나, 2018년까지 시범보급 기간을 거치며 바이오중유 생산사들의 제조기술 및 발전소의 구매 연료 품질 관 리 체계의 발전 등으로 연료 품질이 빠르게 안정화되었다. 이후 상용화 기간을 포함한 2023년까지 인화점 과 황분 함량은 안정적으로 유지되었고, 동점도, 회분, 유동점, 전산가, 금속분, 인 함량 등은 감소 추세를 나타내었으며, 발열량은 증가 추세를 보이는 것으로 나타났다. 10년간 바이오중유의 품질은 시범보급 첫해 를 제외하고 모두 법적인 품질기준을 만족하였고 연료로서의 품질 특성은 안정화되며 개선되고 있는 것으 로 나타났다.
본 연구는 아메리카동애등에(Hermetia illucens)의 대량 사육을 위하여 남은음식물 사료의 최적 수분 함량과 적정 사육 밀도를 조사하였다. 실 험에서는 500 g의 습식 사료의 수분 함량을 각각 30%, 50%, 70%, 90%로 조정한 후, 3,500마리의 3령 유충을 7일 동안 사육하였다. 그 결과, 90% 수분 함량에서 평균 유충 무게는 7.19 g으로 측정되었고, 70% 수분 함량에서 가장 높은 무게인 10.54 g이 나타났다. 반면, 50%와 30% 수분 함량에 서는 유충 생육이 저조한 결과가 나타났다. 적절 사육 밀도를 조사를 위해 100,000, 150,000, 200,000, 250,000 마리의 3령 유충을 70% 수분함량 의 100 kg 습식 사료에 7일 동안 처리하였다. 그 결과, 250,000 마리에서 총 유충 생산량이 22.79 kg으로 가장 높게 나타났으나, 150,000, 200,000, 250,000 마리 밀도 간에는 유의미한 차이가 없었다. 100마리당 평균 무게는 100,000 마리에서 16.90 g, 150,000 마리에서 15.20 g, 200,000 마리 에서 11.30 g, 250,000 마리에서 9.50 g으로 확인되었으며, 100,000 마리와 150,000 마리 밀도 간에는 유의미한 차이가 없었다. 결론적으로, 남은 음식물 사료인 습식사료 100 kg를 급여할 경우 수분 함량을 70%로 유지하고 사육 밀도를 15만 마리로 설정하는 것이 가장 효과적임을 확인하였다.
This study sought various ways to prevent the occurrence of waste fishing gear and promote the recovery. It is expected that the problem of waste fishing gear can be effectively solved through measures such as strengthening education and publicity, technical measures, establishment of recovery infrastructure, and provision of incentives. In particular, introduction of the waste fishing gear recovery promotion point system gives fishermen practical motivation. It can be an important means of inducing leisure and sustainable fishing activities. In addition, by inducing the participation of private companies, it is expected to promote the recovery and recycling of waste fishing ports and contribute to the protection of the marine environment and fisheries resources. The government or local government should actively review the measures suggested in this study and prepare related laws and policies. In addition, it is necessary to establish a system to induce the participation of various stakeholders and support sustainable fishing activities through public-private cooperation. Through this, we will be able to achieve carbon neutrality goals in the fishing sector in response to climate change. This study suggests an early stage plan, and in future research, it is necessary to evaluate and find and improve practical effects through pilot projects. Moreover, it is necessary to study the management of closed fishing gear and carbon neutrality practice measures at the global level by seeking international cooperation measures. Consequently, more effective and sustainable marine environment and fishery resource protection measures can be prepared.
A substantial quantity of discarded tires has inflicted harm on the environment. Microwave pyrolysis of discarded tires emerges as an efficient and environmentally friendly method for their recycling. This research innovatively utilizes the characteristics of microwave rapid and selective heating to pyrolyze waste tires into porous graphene under the catalysis of KOH etching. Moreover, this study comprehensively investigates the dielectric characteristics and heating behavior of waste tires and different proportions of waste tire–KOH mixtures. It validates the preparation of graphene through KOH-catalyzed microwave pyrolysis of waste tires, tracking morphological and structural changes under varying temperature conditions. The results indicate that optimal dielectric performance of the material is achieved at an apparent density of 0.68 g/cm3 at room temperature. As the temperature increases, the dielectric constant gradually rises, particularly reaching a notable increase around 700 °C, and then stabilizes around 750 °C. Additionally, the study investigates the penetration depth and reflection loss of mixtures with different proportions, revealing the waste tire–KOH mass ratio of 1:2 demonstrates favorable dielectric properties. This research highlights the impressive microwave responsiveness of the waste tire–KOH mixture, Upon the addition of KOH, the mixed material exhibits an augmented dielectric constant and relative dielectric constant, supporting the viability of KOH-catalyzed microwave pyrolysis for producing porous graphene from waste tires. This method is expected to provide a new method for the valuable reuse of waste tires and a technology for large-scale, efficient and environmentally friendly production of graphene.