검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 5

        1.
        2011.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, powder metallurgy and severe plastic deformation by high-pressure torsion (HPT) approaches were combined to achieve both full density and grain refinement at the same time. Water-atomized pure iron powders were consolidated to disc-shaped samples at room temperature using HPT of 10 GPa up to 3 turns. The resulting microstructural size decreases with increasing strain and reaches a steady-state with nanocrystalline (down to ~250 nm in average grain size) structure. The water-atomized iron powders were deformed plastically as well as fully densified, as high as 99% of relative density by high pressure, resulting in effective grain size refinements and enhanced microhardness values.
        4,000원
        2.
        2009.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In order to investigate the effect of rapid solidification on the microstructure and the mechanical properties of Al-Zn-Mg system alloys, water atomization was carried out, since the water atomization beared the highest solidification rate among the atomization processes. The as atomized alloy powders consisted of fine grains less than 4 in diameter, and the second particles were not detected on XRD. The microstructure as solidified was maintained even after the spark plasma sintering at the heating rate of 50 K/min. On the other hand, lower rate of 20 K/min induced a formation of particles, resulting in strengthening of the matrix. The density was almost constant at the temperature above 698K. The sintering temperature above 698K had no effect on the strength of the sintered materials.
        4,000원
        3.
        2006.09 구독 인증기관·개인회원 무료
        Metal powder for dust core application was developed. The powder can be produced improved high-pressure water atomization process. The process has produced powder of spherical shape and lower coercivity. The dust core obta ined shows lower core loss.
        4.
        2006.09 구독 인증기관·개인회원 무료
        Co-based amorphous powder was produced by a new atomization process “Spinning Water Atomization Process (SWAP)”, having rapid super-cooling rate. The composition of the alloys was ((Co0.95Fe0.05)1-xCrx)75Si15B10 (x=0, 0.025, 0.05, 0.075). The powders became the amorphous state even if particle size was up to about 500 μm. The coercive force of powders was about 0.35 - 0.7 Oe. Furthermore, Co-based amorphous powder cores with glass binders were made by cold-pressing and sintering methods. The initial permeability of the core in the frequency range up to 100 kHz was about 110, and the core loss at 100 kHz for Bm = 0.1 T was 350 kW/m3.
        5.
        2006.04 구독 인증기관·개인회원 무료
        In order to obtain spherical fine powder, we have developed a new method of high-pressure water atomization system using swirl water jet with the swirl angle . The effect of nozzle apex angle upon the morphology of atomized powders was investigated. Molten copper was atomized by this method, with rad (swirl water jet) and rad (conical water jet). It was found that the median diameter of atomized powders decreased with decreasing down to 0.35 rad in each , but under θ<0.35 rad, increased abruptly with decreasing for rad, while it was still decreased with decreasing for rad.