Airpower is a crucial force for suppressing military threats and achieving victory in wars. This study evaluates newly introduced fighter forces, considering factors such as fighter performance and power index, operational environment, capacity of each airbase, survivability, and force sustainment capability to determine the optimal deployment plan that maximizes operational effectiveness and efficiency. Research methods include optimization techniques such as MIP(mixed integer programming), allocation problems, and experimental design. This optimal allocation mathematical model is constructed based on various constraints such as survivability, mission criticality, and aircraft's performance data. The scope of the study focuses the fighter force and their operational radius is limited to major Air Force and joint operations, such as air interdiction, defensive counter-air operations, close air support, maritime operations and so on. This study aims to maximize the operational efficiency and effectiveness of fighter aircraft operations. The results of proposed model through experiments showed that it was for superior to the existing deployment plan in terms of operation and sustainment aspects when considering both wartime and peacetime.
The main problem of airport noise is the impact of aircraft noise on the residents around the airport. In order to investigate the noise situation of a certain airport in South Korea, this article selects Muan Airport as the research project, selects five measurement points near the airport, takes aircraft takeoff as an example, measures the maximum noise level of each measurement point during each take off, and uses the American Airport Noise Prediction Software (AEDT 3C) to predict the noise of a single aircraft during take off, Calculate the contour area and sound exposure level data for four aircraft models. The results indicate that the average maximum noise level error between the measurement results and the simulation results is within 2dB, and the maximum noise level ranges from 65.1 to 88.1 decibels with the measurement range.
The airport is chosen as the measurement airport in this paper to investigate the noise characteristics of piston engine aircraft used for training at Muan airport. Five measurement points near the runway are chosen. The maximum noise values of piston engine aircraft (C172) and SR20 take-off processes are measured. The results show that the average maximum noise values of the five measuring points range from 66.5 dB(A) to 76.7 dB(A), with point C having the greatest noise influence. During take-off, the maximum noise of an SR20 aircraft occurs near 500Hz of low frequency.
Advancements in technology for large aircraft have led to the development of new materials for aviation. Traditional alloy-based components in aircraft, once prevalent, are now being replaced by composite materials that offer superior performance in terms of strength and operational limits. Notably, propellers have evolved from wood to composite materials, finding application in contemporary small aircraft. In this context, there is a need for research on the composite propellers of the 3-blade "W Company," based on the widely used Rotax 914 engine in South Korea. This study aims to investigate the changes in noise and thrust corresponding to variations in propeller blade angles and engine RPM, with the goal of selecting the optimal propeller pitch angle. Particularly, the "W Company's" propellers are durable and cost-effective, widely adopted in domestic aircraft. The research seeks to propose an effective method to minimize noise while maintaining the necessary thrust, contributing to the smooth operation of aircraft and promoting coexistence with local communities.
In the past, aviation technology developed from wood to alloys to composite materials. Propellers have also evolved from wood to composite materials for modern small aircraft. In this context, research is needed on a three-blade composite propeller based on the Rotax 912 engine, which is widely used in Korea. In this study, the goal is to select the optimal propeller pitch angle by investigating noise changes according to changes in blade angle and engine 4000RPM of three types of three-blade propellers different from each propeller manufacturer. By comparing the noise of the three types of propellers most commonly used in Korea and suggesting the minimum noise blade angle for each propeller, we aim to help aircraft operators select propellers and resolve noise complaints around airfields.
Since the September 11 terrorist attacks in the United States, concerns about intentional aircraft crashes into nationally critical facilities have soared in countries around the world. The United States government advised nuclear utilities to strengthen the security of nuclear power plants against aircraft crashes and stipulated aircraft crash assessment for new nuclear facilities. Interest in military missile attacks on nuclear facilities has grown after Russia attacked Ukraine’s Zaporizhzhia nuclear power plant, where spent nuclear power dry storage facility is operated. Spent nuclear fuel dry storage facilities in nuclear power plant sites should also strengthen security in preparation for such aircraft crashes. Most, but not all, spent nuclear fuel dry storage facilities in Europe, Japan and Canada are operated within buildings, while the United States and Korea operate dry storage facilities outdoors. Since all of Korea’s dry storage systems are concrete structures vulnerable to crash loads and are exposed to the outside, it is more necessary to prepare for aircraft crash terrorist attacks due to the Korea’s military situation. Residents near nuclear power plants are also demanding assessment and protective measures against such aircraft crashes. However, nuclear power plants, including spent nuclear fuel dry storage facilities, are strong structures and have very high security, so they are unlikely to be selected as targets of terrorism, and spent nuclear fuel dry storage systems are so small that aircraft cannot hit them accurately. Collected opinions on the assessment of aircraft crash accidents at spent nuclear fuel dry storage facilities in nuclear power plant sites were reviewed. In addition, the current laws and regulatory requirements related to strengthening the security of new and existing nuclear power plants against intentional aircraft crashes are summarized. Such strengthening of security can not only ensure the safety of on-site spent nuclear fuel dry storage facilities, but also contribute to the continuous operation of nuclear power plants by increasing resident acceptance.
Aircraft noise is something humans don't want. In this study, based on the Rotax 914 engine used in Korea, the propeller blade angle was changed by 1 degree and the engine RPM was changed to review the three-wing “G Company” propeller and the three-wing GSC wooden propeller. Select the best propeller pitch angle by measuring the change in propeller noise and thrust and the change in engine RPM due to the change in noise and thrust. We would like to present a propeller pitch angle suitable for the location of the airfield and the operation of the aircraft. Based on this, we would like to help resolve noise complaints around the airfiled.
This study identified the core competencies of aircraft maintenance quality engineers and compared the importance and retention of core competencies. Through literature research, 21 core competencies were derived in three areas of management technology, elemenal technology and collaboration technology, and a survey was conducted on the importance and retention of core competencies for 42 aircraft maintenance quality engineers. As a result of the survey, the importance of all core competencies of aircraft maintenance quality engineers is 3.95/5 on average, and the retention of all core competencies is 3.99/5 on average. 'Risk Management’, ‘Creating Document’, ‘Honesty/Moral’ were identified as the most important competencies in each area, and ‘Quality Management’, ‘Language’, ‘Honesty/Moral’ were identified as the most possessed competencies in each area. An IPA (Importance-Performance Analysis) was performed to analyze the details. Through IPA, ‘Risk Management’ and ‘Safety Management’ were evaluated as having a low degree of retention compared to a high level of importance. Therefore, they were identified as a core competencies that need to be improved first. In addition, the characteristics of each core competency and the recognition level in the field were also identified. This study will be helpful in defining the roles and functions of aircraft maintenance quality engineers to improve flight quality and prevent aviation accidents.
Most domestic pilots are trained at local airfields using propeller aircraft. Training aircraft are mainly trained in the airspace around the aerodrome, and mainly take-off and landing exercises that require a lot of practice among flight control skills. Aircraft noise is a sound that humans do not want. In this study, based on the Rotax 914 engine used in Korea, the propeller blade angle was changed by 1 degree for the 3-leaf “K company” propeller and the 3-leaf GSC wooden propeller, and the engine RPM was changed to examine the noise and thrust changes. The purpose of this study is to check whether noise and thrust loss are the least at the engine's maximum RPM, and to propose an aircraft operation plan in the noisy aerodrome area based on the values.
This research is to study the solution to the defects in maintenance and inspection that can be predicted/prevented in advance among human factors that account for more than 70% of the causes of aviation accidents. Traditionally, mechanics have performed visual inspections of aircraft exteriors. Due to this, there were factors that affect the human ability of mechanics in aircraft maintenance and inspection, safety problems when performing the upper part of the aircraft inspection, and the difficulty of precise inspection. To improve these problems, we conduct a study on an AI drone inspection system that has deep-learned samples on aircraft damage/defects. In this paper, we describe the aircraft maintenance inspection checklist, non-destructive inspection types, types of aircraft damage and defects, deep-learning highly reliable AI drone inspection systems, and the expected effects of this technology and future applications. Through this system research, it is expected that mechanics will efficiently inspect the aircraft through the optimization of aircraft maintenance system technology to prevent aviation accidents in advance and reduce time and economic costs.
ROK Navy intends to secure the Korean-type aircraft carrier in order to effectively prepare for various future security threats. In general, the Korean national competency is considered to be at the level of having an aircraft carrier, but it is unclear what scale aircraft carrier would be appropriate. In this study, the efficiency was evaluated through the relative comparison between national competency(national power, economic power) and the scale of aircraft carriers, and the optimal scale of the Korean-type aircraft carrier that could be acquired was presented. A DEA(Data Envelopment Analysis) model was applied to aircraft carriers(19 aircraft carriers in 11 countries) currently in operation and scheduled to be possessed in the world. As input variables, CINC(Composite Index of National Capability) and GDP(Gross Domestic Product), which are the most widely used as indicators of national and economic power, and as output variables, the full-load displacement, length, and width of aircraft carriers were selected. ARIMA(short-term within 5 years) and simple regression(long-term over 5 years) were used to estimate the future national competency of each country at the time of aircraft carriers acquisition. The relative efficiency score of the Korean-type aircraft carrier currently being evaluated is 1.062, and it was evaluated as small-scale aircraft carrier compared to the national competency. Based on Korean national competency, the optimal scale of the Korean-type aircraft carrier calculated by aggregating benchmark groups, is 58,308.1 tons of full-load displacement, 279.4m in length, and 68.3m in width.
Recently, the Defense Advanced Research Projects Agency(DARPA) in the United States is studying a new concept of war called Mosaic Warfare, and MUM-T(Manned-Unmanned Teaming) through the division of missions between expensive manned and inexpensive unmanned aircraft is at the center. This study began with the aim of deriving the priority of autonomous functions according to the role of unmanned aerial vehicles in the present and present collaboration that is emerging along with the concept of mosaic warfare. The autonomous function of unmanned aerial vehicles between the presence and absence collaboration may vary in priority depending on the tactical operation of unmanned aerial vehicles, such as air-to-air, air-to-ground, and surveillance and reconnaissance. In this paper, ACE (Air Combat Evaluation), Skyborg, and Longshot, which are recently studied by DARPA, derive the priority of autonomous functions according to air-to-air collaboration, and use AHP analysis. The results of this study are meaningful in that it is possible to recognize the priorities of autonomous functions necessary for unmanned aircraft in order to develop unmanned aerial vehicles according to the priority of autonomous functions and to construct a roadmap for technology implementation. Furthermore, it is believed that the mass production and utilization of unmanned air vehicles will increase if one unmanned air vehicle platform with only essential functions necessary for air-to-air, air-to-air, and surveillance is developed and autonomous functions are expanded in the form of modules according to the tactical operation concept.
Military aircraft R&D projects require large-scale investment in cost and time, and involve a complex coordination process in decision-making. The R&D project manager should determine the development management priorities as accurately as possible and focus on R&D capabilities, thereby reducing the risks of the aircraft R&D project. To this end, this study aims to reduce R&D risk by prioritizing cost, schedule, and performance, which are basic management factors used in R&D project management in defense project management regulations. Analytic Hierarchy Process (AHP) is applied using a questionnaire for managers in charge of aviation R&D under the Defense Acquisition Program Administration. As a primary result, the importance of the factors that the aircraft R&D project manager should consider was derived in the order of performance, cost, and schedule, and the priorities of performance and cost in the lower layer were also identified. In addition, in order to provide practical risk management measures to aircraft R&D project managers, the results of analyzing 28 cases of US National Transportation Safety Board accidents were compared and analyzed with the AHP analysis results, and management measures suitable for the situation were specified.
This study indirectly measures the vibration value corresponding to the abnormal vibration generated by the small engine for light aircraft to which the dual carburetor is applied by the pressure difference from each carburetor. It relates to a system for outputting a warning to a pilot, comprising two pressure gauges for measuring the pressure from each carburetor and a warning signal output unit for outputting a warning signal corresponding to the pressure difference measured by the two pressure gauges do.
점차 최근 들어 새로운 기술로 주목받고 있는 무인항공기 또는 드론을 이용한 테러공격의 개연성이 점차 심각한 위협으로 대두되고 있다. 테러 집단의 신기술에 대한 관심과 투자는 자신들의 테러 목적을 달성과 테러 활동을 지속을 위해 새로운 기술적 수단을 찾는 형태로 지속되고 있다. 이에 따라 오늘날 몇몇 테러집단들은 테러공격수단으로 상당한 수준의 드론을 확보하고 있는 상황이다. 이와 관련해 심각한 문제는 드론을 이 용한 공격이 전통적인 무기를 사용할 때 보다 더 많은 사상자를 발생시킬 수 있고, 대량살상무기들인 핵물질이나 화학물질과 함께 이용하면 그 살상력과 파괴력이 더욱 커진다는 점이다. 또한 드론은 값이 싸며, 조종 이나 이용이 간편하고 기존의 보안시스템을 회피할 수 있다는 장점이 있다. 더 나아가 앞으로 테러집단의 드론을 이용한 테러공격이 가속화되고 정교화 될 경우 하드타켓에 대한 테러의 접근이 용이해 질 것으로 보여져 그 피해가 더욱 클 것으로 우려된다. 이 같은 무인항공기 또는 드론을 이용한 테러집단의 테러전략과 전술의 변화를 국제사회는 매우 심각하게 받아들이고 대응할 필요가 있다. 테러세력은 언제나 새로운 공격방법, 진전된 공격무기와 수단을 찾는 다는 점을 인식하고 국가안보기관의 대응 역시 새로운 기술발전의 추이에 발맞추어야 할 것이다. 그러나 국제적으로 기존의 항공법 등과 관련한 다수의 기존법률이 안보기관들의 무인항공기/드론 테러에 대한 대응을 효과적으로 지원하지 못하는 문제점이 존재한다는 점이 지적되고 있다. 국내의 경우도 마찬가지로 이 같은 대응에 대해 아직까지 입법적 조치가 이루어지지 않은 상황이다. 따라서 이와 같은 관련 부문에 대한 필요에 따라 이 연구는 국내의 무인항공기 또는 드론의 법적 의미와 그 범위를 파악하고 국내의 무인항공기 관리와 그 문제점들에 대해 평가한다. 또한 미국의 안보기관의 드론 테러 대응 실험 및 연구, 테스트 등을 가능하게 하는 입법조치를 소개하면서 국내의 적용가능성에 대해 논의하였다.